147 research outputs found

    Grating coupled photonic crystal demultiplexer with integrated detectors on InP-membrane

    Get PDF
    We report on the successful integration of grating fiber couplers, compact photonic crystal demultiplexers and efficient p-i-n photodetectors on a single bonded InP-membrane chip. Polarization independent operation is obtained by implementing polarization diversity

    Preliminary signs of the initiation of deep convection by GNSS

    Get PDF
    This study reports on the exploitation of GNSS (Global Navigation Satellite System) and a new potential application for weather forecasts and nowcasting. We focus on GPS observations (post-processing with a time resolution of 5 and 15 min and fast calculations with a time resolution of 5 min) and try to establish typical configurations of the water vapour field which characterise convective systems and particularly which supply precursors of their initiation are associated with deep convection. We show the critical role of GNSS horizontal gradients of the water vapour content to detect small scale structures of the troposphere (i. e. convective cells), and then we present our strategy to obtain typical water vapour configurations by GNSS called "H2O alert". These alerts are based on a dry/wet contrast taking place during a 30 min time window before the initiation of a convective system. GNSS observations have been assessed for the rainfall event of 28-29 June 2005 using data from the Belgian dense network (baseline from 5 to 30 km). To validate our GNSS H2O alerts, we use the detection of precipitation by C-band weather radar and thermal infrared radiance (cloud top temperature) of the 10.8-micrometers channel [Ch09] of SEVIRI instrument on Meteosat Second Generation. Using post-processed measurements, our H2O alerts obtain a score of about 80 %. Final and ultra-rapid IGS (International GNSS Service) orbits have been tested and show equivalent results. Fast calculations (less than 10 min) have been processed for 29 June 2005 with a time resolution of 5 min. The mean bias (and standard deviation) between fast and reference post-processed ZTD (zenith total delay) and gradients are, respectively, 0.002 (+/- 0.008) m and 0.001 (+/- 0.004) m. The score obtained for the H2O alerts generated by fast calculations is 65 %

    On the statistical evaluation of dose-response functions

    Get PDF
    The linear-quadratic dependence of effect on the dose of ionizing radiation and its biophysical implications are considered. The estimation of the parameters of the response function and the derivation of the joint confidence region of the estimates are described. The method is applied to the induction of pink mutations inTradescantia which follows the linear-quadratic model. The statistical procedure is also suitable for other response functions

    Anak Krakatau triggers volcanic freezer in the upper troposphere

    Get PDF
    Volcanic activity occurring in tropical moist atmospheres can promote deep convection and trigger volcanic thunderstorms. These phenomena, however, are rarely observed to last continuously for more than a day and so insights into the dynamics, microphysics and electrification processes are limited. Here we present a multidisciplinary study on an extreme case, where volcanically-triggered deep convection lasted for six days. We show that this unprecedented event was caused and sustained by phreatomagmatic activity at Anak Krakatau volcano, Indonesia during 22-28 December 2018. Our modelling suggests an ice mass flow rate of similar to 5x10(6)kg/s for the initial explosive eruption associated with a flank collapse. Following the flank collapse, a deep convective cloud column formed over the volcano and acted as a 'volcanic freezer' containing similar to 3x10(9)kg of ice on average with maxima reaching similar to 10(10)kg. Our satellite analyses reveal that the convective anvil cloud, reaching 16-18km above sea level, was ice-rich and ash-poor. Cloud-top temperatures hovered around -80 degrees C and ice particles produced in the anvil were notably small (effective radii similar to 20 mu m). Our analyses indicate that vigorous updrafts (>50m/s) and prodigious ice production explain the impressive number of lightning flashes (similar to 100,000) recorded near the volcano from 22 to 28 December 2018. Our results, together with the unique dataset we have compiled, show that lightning flash rates were strongly correlated (R=0.77) with satellite-derived plume heights for this event

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    Early warning system of natural hazards and decrease of climat impact from aviation; ALARM funded project

    Get PDF
    Aviation safety can be jeopardised by multiple hazards arising from natural phenomena, e.g., severe weather, aerosols/gases from natural hazard, and space weather. Furthermore, there are the anthropogenic emissions and climate impact of aviation that could be reduced. To mitigate such risk and/or to decrease climate impact, tactical decision-making processes could be enhanced through the development of multihazard monitoring and Early Warning System (EWS). With this objective in mind, ALARM consortium has implemented alert products (i.e., observations, detection and data access in near realtime) and tailored product (notifications, flight level — FL contamination, risk area, and visualization of emission/risk level) related to Natural Airborne Hazard (NAH, i.e., volcanic, dust and smoke clouds) and environmental hotspots. New selective detection, nowcasting and forecasts of such risks for aviation have been implemented as part of ALARM prototype EWS. This system has two functionalities. One is to provide alerts on a global coverage using remote sensing from satellites and models (focus on NAH, space weather activity and environmental hotspots). A second focuses on detecting severe weather and exceptional SO2 conditions around a selection of few airports, on providing nowcasts and forecasts of risk conditions

    Sentinel Node Identification Rate and Nodal Involvement in the EORTC 10981-22023 AMAROS Trial

    Get PDF
    Background The randomized EORTC 10981-22023 AMAROS trial investigates whether breast cancer patients with a tumor-positive sentinel node biopsy (SNB) are best treated with an axillary lymph node dissection (ALND) or axillary radiotherapy (ART). The aim of the current substudy was to evaluate the identification rate and the nodal involvement. Methods The first 2,000 patients participating in the AMAROS trial were evaluated. Associations between the identification rate and technical, patient-, and tumor-related factors were evaluated. The outcome of the SNB procedure and potential further nodal involvement was assessed. Results In 65 patients, the sentinel node could not be identified. As a result, the sentinel node identification rate was 97% (1,888 of 1,953). Variables affecting the success rate were age, pathological tumor size, histology, year of accrual, and method of detection. The SNB results of 65% of the patients (n = 1,220) were negative and the patients underwent no further axillary treatment. The SNB results were positive in 34% of the patients (n = 647), including macrometastases (n = 409, 63%), micrometastases (n = 161, 25%), and isolated tumor cells (n = 77, 12%). Further nodal involvement in patients with macrometastases, micrometastases, and isolated tumor cells undergoing an ALND was 41, 18, and 18%, respectively. Conclusions With a 97% detection rate in this prospective international multicenter study, the SNB procedure is highly effective, especially when the combined method is used. Further nodal involvement in patients with micrometastases and isolated tumor cells in the sentinel node was similar—both were 18%
    corecore