80 research outputs found

    The penetration of plasma clouds across magnetic boundaries : the role of high frequency oscillations

    Full text link
    Experiments are reported where a collisionfree plasma cloud penetrates a magnetic barrier by self-polarization. We here focus on the resulting anomalous magnetic field diffusion into the plasma cloud, two orders of magnitude faster than classical, which is one important aspect of the plasma cloud penetration mechanism. Without such fast magnetic diffusion, clouds with kinetic beta below unity would not be able to penetrate magnetic barriers at all. Tailor-made diagnostics has been used for measurements in the parameter range with the kinetic beta ? 0.5 to 10, and with normalized width w/r(gi) of the order of unity. Experimental data on hf fluctuations in density and in electric field has been combined to yield the effective anomalous transverse resistivity eta(EFF). It is concluded that they are both dominated by highly nonlinear oscillations in the lower hybrid range, driven by a strong diamagnetic current loop that is set up in the plasma in the penetration process. The anomalous magnetic diffusion rate, calculated from the resistivity eta(EFF), is consistent with single-shot multi-probe array measurements of the diamagnetic cavity and the associated quasi-dc electric structure. An interpretation of the instability measurements in terms of the resistive term in the generalized (low frequency) Ohm's law is given.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Conditions for plasmoid penetration across magnetic barriers

    Full text link
    The penetration of plasma clouds, or plasmoids, across abrupt magnetic barriers (of the scale less than a few ion gyro radii, using the plasmoid directed velocity) is studied. The insight gained earlier, from experimental and computer simulation investigations of a case study, is generalised into other parameter regimes. It is concluded for what parameters a plasmoid should be expected to penetrate the magnetic barrier through self-polarization, penetrate through magnetic expulsion, or be rejected from the barrier. The scaling parameters are n(e), v(0), B(perp), m(i), T(i), and the width w of the plasmoid. The scaling is based on a model for strongly driven, nonlinear magnetic field diffusion into a plasma, which is a generalization of the laboratory findings. The results are applied to experiments earlier reported in the literature, and also to the proposed application of impulsive penetration of plasmoids from the solar wind into the Earth's magnetosphere.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Nucleation of titanium nanoparticles in an oxygen-starved environment, I: Experiments

    Full text link
    A constant supply of oxygen has been assumed to be necessary for the growth of titanium nanoparticles by sputtering. This oxygen supply can arise from a high background pressure in the vacuum system or from a purposely supplied gas. The supply of oxygen makes it difficult to grow metallic nanoparticles of titanium and can cause process problems by reacting with the target. We here report that growth of titanium nanoparticles in the metallic hexagonal titanium ({\alpha}Ti) phase is possible using a pulsed hollow cathode sputter plasma and adding a high partial pressure of helium to the process instead of trace amounts of oxygen. The helium cools the process gas in which the nanoparticles nucleate. This is important both for the first dimer formation and the continued growth to a thermodynamically stable size. The parameter region where the synthesis of nanoparticles is possible is mapped out experimentally and the theory of the physical processes behind this process window is outlined. A pressure limit below which no nanoparticles were produced was found at 200 Pa, and could be attributed to a low dimer formation rate, mainly caused by a more rapid dilution of the growth material. Nanoparticle production also disappeared at argon gas flows above 25 sccm. In this case the main reason was identified as a gas temperature increase within the nucleation zone, giving a too high evaporation rate from nanoparticles (clusters) in the stage of growth from dimers to stable nuclei. These two mechanisms are in depth explored in a companion paper [1]. A process stability limit was also found at low argon gas partial pressures, and could be attributed to a transition from a hollow cathode discharge to a glow discharge.Comment: 22 pages, 11 figure

    Nucleation of titanium nanoparticles in an oxygen-starved environment, II: Theory

    Full text link
    The nucleation and growth of pure titanium nanoparticles in a low-pressure sputter plasma has been believed to be essentially impossible. The addition of impurities, such as oxygen or water, facilitates this and allows the growth of nanoparticles. However, it seems that this route requires so high oxygen densities that metallic nanoparticles in the hexagonal aTi-phase cannot be synthesized. Here we present a model which explains results for the nucleation and growth of titanium nanoparticles in the absent of reactive impurities. In these experiments, a high partial pressure of helium gas was added which increased the cooling rate of the process gas in the region where nucleation occurred. This is important for two reasons. First, a reduced gas temperature enhances Ti2 dimer formation mainly because a lower gas temperature gives a higher gas density, which reduces the dilution of the Ti vapor through diffusion. The same effect can be achieved by increasing the gas pressure. Second, a reduced gas temperature has a "more than exponential" effect in lowering the rate of atom evaporation from the nanoparticles during their growth from a dimer to size where they are thermodynamically stable, r*. We show that this early stage evaporation is not possible to model as a thermodynamical equilibrium. Instead, the single-event nature of the evaporation process has to be considered. This leads, counter intuitively, to an evaporation probability from nanoparticles that is exactly zero below a critical nanoparticle temperature that is size-dependent. Together, the mechanisms described above explain two experimentally found limits for nucleation in an oxygen-free environment. First, there is a lower limit to the pressure for dimer formation. Second, there is an upper limit to the gas temperature above which evaporation makes the further growth to stable nuclei impossible.Comment: 32 pages, 7 figure
    corecore