213 research outputs found

    An efficient tool for the assisted design of SAR ADCs capacitive DACs

    Get PDF
    The optimal design of SAR ADCs requires the accurate estimate of nonlinearity and parasitic capacitance effects in the feedback charge redistribution DAC. Since both contributions depend on the specific array topology, complex calculations, custom modeling and heavy simulations in common circuit design environments are often required. This paper presents a MATLAB-based numerical environment to assist the design of the charge redistribution DACs adopted in SAR ADCs. The tool performs both parametric and statistical simulations taking into account capacitive mismatch and parasitic capacitances computing both differential and integral nonlinearity (DNL, INL). An excellent agreement is obtained with the results of circuit simulators (e.g. Cadence Spectre) featuring up to 10^4 shorter simulation time, allowing statistical simulations that would be otherwise impracticable. The switching energy and SNDR degradation due to static nonlinear effects are also estimated. Simulations and measurements on three designed and two fabricated prototypes confirm that the proposed tool can be used as a valid instrument to assist the design of a charge redistribution SAR ADC and to predict its static and dynamic metrics

    A 64-Channel 965-μW Neural Recording SoC with UWB Wireless Transmission in 130-nm CMOS

    Get PDF
    This brief presents a 64-channel neural recording system-on-chip (SoC) with a 20-Mb/s wireless telemetry. Each channel of the analog front end consists of a low-noise bandpass amplifier, featuring a noise efficiency factor of 3.11 with an input-referred noise of 5.6 μVrms in a 0.001- to 10-kHz band and a 31.25-kSps 6-fJ/conversion-step 10-bit SAR analog-to-digital converter. The recorded signals are multiplexed in the digital domain and transmitted via an 11.7% efficiency pulse-position modulation ultrawideband transmitter, reaching a transmission range in excess of 7.5 m. The chip has been fabricated in a 130-nm CMOS process, measures 25 mm2, and dissipates 965 μW from a 0.5-V supply. This SoC features the lowest power per channel (15 μW) and the lowest energy per bit (48.2 pJ) among state-of-the-art wireless neural recording systems with a number of channels larger than 32. The proposed circuit is able to transmit the raw neural signal in a large bandwidth (up to 10 kHz) without performing any data compression or losing vital information, such as local field potentials

    Surface treatment to improve corrosion resistance of pure titanium

    Get PDF
    The corrosion behavior of pure titanium UNS R50250 and UNS R50400 were investigated and compared with electrochemical behavior of Ti-0.2Pd and Ti-0.3Mo-0.8Ni alloys (UNS R52400 and UNS R53400 respectively). Surface treatments, especially anodic oxidations, were conducted in order to enhance the corrosion resistance of pure titanium up to the corrosion resistance of titanium alloys one. Samples were then tested with potentiodynamic analyses in chloride and fluoride containing solutions, in order to find critical pitting potentials for each condition and treatment. The results show that, despite all anodization treatments increased titanium corrosion resistance to different extents, no treatment was able to increase it up to UNS R52400 level. A suggestion on the best anodization procedure to increase corrosion resistance while maintaining ease of treatment is given based on potentiodynamic test results

    Can an intermittent cathodic protection system prevent corrosion of buried pipeline?

    Get PDF
    Carbon steel pipelines are provided with corrosion prevention systems, namely an insulating coating and a cathodic protection (CP) system that reduces corrosion rate below 10 μm/a. CP is applied by a stationary cathodic current, which effectiveness on the metal surface is twofold: oxygen consumption and alkalinization (pH > 10) at the metal-to-electrolyte interface. The increase of pH is beneficial, promoting passive condition. In this paper, a preliminary study of the effect of intermittent CP has been carried out in order to investigate the effect of a temporary current interruption on the potential monitoring and on the residual corrosion of the metal. During the on period, oxygen is consumed and alkaline pH is established, during off period, the alkalinity and the slow oxygen replacement assure corrosion rates lower than in free corrosion condition. Test has been performed both in normal and overprotection condition, varying the off period duration, monitoring weekly the protection potential

    Effect of intermittent cathodic protection on potential and corrosion rate of carbon steel in soil simulating solution

    Get PDF
    Carbon steel in aerated soil operates in cathodic protection (CP) condition if the IR-free potential is more negative than –0.850 V CSE, which corresponds to a corrosion rate lower than 0.01 mm·a-1. CP is applied by a stationary current, which effectiveness depends on a thermodynamic effect, which reduces (or stops) corrosion rate, and on a chemical effect due to the alkalinisation at the metal-to-electrolyte interface. The increase of pH is promoted by the cathodic reactions (oxygen reduction and, at lower potential, hydrogen evolution) occurring on the polarized metal and can promote passive condition. In this paper, a preliminary study of intermittent CP has been carried out in order to investigate the effect of a temporary current interruption on potential monitoring and on residual corrosion rate of steel in soil simulating solution. Test has been performed applying two cathodic current densities (0.2 and 1.0 A·m-2), varying the current-off period daily duration (6, 12 and 16 hours) and monitoring weekly the potential. During the on period (i.e. CP on), oxygen is consumed and alkaline pH is established; during the off period (i.e. when CP is interrupted), the alkalinity and the slow oxygen replacement assure corrosion rates lower than in free corrosion condition, especially if high cathodic current density is previously applied

    Epigenetic and posttranslational modifications in light signal transduction and the circadian clock in Neurospora crassa

    Get PDF
    Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC), a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ), the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM). The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock

    WC-1 and the proximal GATA sequence mediate a cis-/trans-acting repressive regulation of light-dependent gene transcription in the dark

    Get PDF
    Light influences a wide range of physiological processes from prokaryotes to mammals. Neurospora crassa represents an important model system used for studying this signal pathway. At molecular levels, the WHITE COLLAR Complex (WCC), a heterodimer formed by WC-1 (the blue light photo-sensor) and WC-2 (the transcriptional activator), is the critical positive regulator of light-dependent gene expression. GATN (N indicates any other nucleotide) repeats are consensus sequences within the promoters of light-dependent genes recognized by the WCC. The distal GATN is also known as C-box since it is involved in the circadian clock. However, we know very little about the role of the proximal GATN, and the molecular mechanism that controls the transcription of light-induced genes during the dark/light transition it is still unclear. Here we showed a first indication that mutagenesis of the proximal GATA sequence within the target promoter of the albino-3 gene or deletion of the WC-1 zinc finger domain led to a rise in expression of light-dependent genes already in the dark, effectively decoupling light stimuli and transcriptional activation. This is the first observation of cis-/trans-acting repressive machinery, which is not consistent with the light-dependent regulatory mechanism observed in the eukaryotic world so far

    Quantifying the Impact of Spatiotemporal Resolution on the Interpretation of Fluvial Geomorphic Feature Dynamics From Sentinel 2 Imagery: An Application on a Braided River Reach in Northern Italy

    Get PDF
    Machine learning algorithms applied on the publicly available Sentinel 2 images (S2) are opening the opportunity to automatically classify and monitor fluvial geomorphic feature (such as sediment bars or water channels) dynamics across scales. However, there are few analyses on the relative importance of S2 spatial versus temporal resolution in the context of geomorphic research. In a dynamic, braided reach of the Sesia River (Northern Italy), we thus analyzed how the inherent uncertainty associated with S2's spatial resolution (10 m pixel size) can impact the significance of the active channel (a combination of sediment and water) delineation, and how the S2's weekly temporal resolution can influence the interpretation of its evolutionary trajectory. A comparison with manually classified images at higher spatial resolutions (Planet: 3 m and orthophoto: 0.3 m) shows that the automatically classified water is ∼20% underestimated whereas sediments are ∼30% overestimated. These classification errors are smaller than the geomorphic changes detected in the 5 years analyzed, so the derived active channel trajectory can be considered robust. The comparison across resolutions also highlights that the yearly Planet‐ and S2‐derived active channel trajectory are analogous and they are both more effective in capturing the river geomorphic response after major flood events than the trajectory derived from sequential multiannual orthophotos. More analyses of this type, across different types of river could give insights on the transferability of the spatial uncertainty boundaries found as well as on the spatial and temporal resolution trade‐off needed for supporting different geomorphic analyses
    corecore