1,370 research outputs found

    Non-local two-photon correlations using interferometers physically separated by 35 meters

    Full text link
    An experimental demonstration of quantum correlations is presented. Energy and time entangled photons at wavelengths of 704 and 1310 nm are produced by parametric downconversion in KNbO3 and are sent through optical fibers into a bulk-optical (704 nm) and an all-fiber Michelson-interferometer (1310 nm), respectively. The two interferometers are located 35 meters aside from one another. Using Faraday-mirrors in the fiber-interferometer, all birefringence effects in the fibers are automatically compensated. We obtained two-photon fringe visibilities of up to 95 % from which one can project a violation of Bell's inequality by 8 standard deviations. The good performance and the auto-aligning feature of Faraday-mirror interferometers show their potential for a future test of Bell's inequalities in order to examine quantum-correlations over long distances.Comment: 9 pages including 3 postscript figures, to be published in Europhys. Let

    Delivery actuator for a transcervical sterilization device

    Get PDF
    The use of delivery systems in the human body for positioning and deploying implants, such as closure devices, dilation balloons, stents, coils and sterilization devices, are gaining more importance to preclude surgical incisions and general anesthesia. The majorities of the non-surgical medical devices are delivered in a low profile into human body form and subsequently require specialized operations for their deployment and release. An analogous procedure for permanent female sterilization is the transcervical approach that does not require either general anesthesia or surgical incision and uses a normal body passage. The objective of this paper is to detail the design, development and verification of an ergonomic actuator for a medical application. In particular, this actuator is designed for the deployment and release of an implant to achieve instant permanent female sterilization via the transcervical approach. This implant is deployed under hysteroscopic visualization and requires a sequence of rotary and linear operations for its deployment and release. More specifically, this manually operated actuator is a hand held device designed to transmit the required forces in a particular sequence to effect both implant deployment and release at a target location. In order to design the actuator and to investigate its mechanical behavior, a three-dimensional (3D) Computer Aided Design (CAD) model was developed and Finite Element Method (FEM) was used for simulations and optimization. Actuator validation was performed following a number of successful bench-top in-air deployments and in-vitro deployments in animal tissue and explanted human uteri. During these deployments it was observed that the actuator applied the required forces to the implant resulting in successful deployment. Initial results suggest that this actuator can be used single handedly during the deployment phase. The ongoing enhancement of this actuator is moving towards “first-in- man” clinical trials

    Limit quantum efficiency for violation of Clauser-Horne Inequality for qutrits

    Full text link
    In this paper we present the results of numerical calculations about the minimal value of detection efficiency for violating the Clauser - Horne inequality for qutrits. Our results show how the use of non-maximally entangled states largely improves this limit respect to maximally entangled ones. A stronger resistance to noise is also found.Comment: Phys. Rev. A in pres

    The GEO 600 laser system

    Get PDF
    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAGNd:YVO4 system is scaled to more than 22 W

    The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    Get PDF
    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population

    Magnetization reversal times in the 2D Ising model

    Full text link
    We present a theoretical framework which is generally applicable to the study of time scales of activated processes in systems with Brownian type dynamics. This framework is applied to a prototype system: magnetization reversal times in the 2D Ising model. Direct simulation results for the magnetization reversal times, spanning more than five orders of magnitude, are compared with theoretical predictions; the two agree in most cases within 20%.Comment: 9 pages, 8 figure

    Practical Quantum Bit Commitment Protocol

    Full text link
    A quantum protocol for bit commitment the security of which is based on technological limitations on nondemolition measurements and long-term quantum memory is presented.Comment: Quantum Inf. Process. (2011

    Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells

    Get PDF
    AbstractIn this paper, we investigate the surface recombination of local screen-printed aluminum contacts applied to rear passivated solar cells. We measure the surface recombination velocity by microwave-detected photoconductance decay measurements on test wafers with various contact geometries and compare two different aluminum pastes. The aluminum paste which is optimized for local contacts shows a deep and uniform local back surface field that results in Smet=600cm/s on 1.5Ωcm p-type silicon. In contrast, a standard Al paste for full-area metallization shows a non-uniform back surface field and a Smet of 2000cm/s on the same material. We achieve an area-averaged rear surface recombination velocity Srear=(65±20) cm/s for line contacts with a pitch of 2mm. The application of the optimized paste to screen-printed solar cells with dielectric surface passivation results in efficiencies of up to 19.2% with a Voc=655mV and a Jsc=38.4mA/cm2 on 125×125 mm2 p-type Cz silicon wafers. The internal quantum efficiency analysis reveals Srear=(70±30) cm/s which is in agreement with our lifetime results. Applying fine line screen-printing, efficiencies up to 19.4% are demonstrated
    corecore