250 research outputs found

    Surgical Cutting and Ablation by Energy Based Devices: Principles and Applications

    Get PDF
    Advances in ultrasound, radiofrequency, and water jet systems are facilitating their increased use in new medical ablation or cutting applications in fields as diverse as cardiology, orthopaedics, ophthalmology, dermatology, oncology and neurosurgery. These methods involve controlled alteration or destruction of tissues via the application of thermal, electrical or kinetic energy. This market segment is characterised by advanced devices capable of heating or cooling tissue from -200°C to 400°C, or inducing vibrations of up to 60 kHz to cause tissue damage. The medical conditions targeted primarily pertain to chronic and age-related diseases, but elective and cosmetic procedures are also addressed. Medical ablation research has the potential for significant clinical and commercial gains. New capabilities in terms of tissue ablation technologies can enable new medical procedures, affording opportunities for design creativity and entrepreneurship and ultimately delivering a health dividend

    Effect of the Condensation of Hybrid Organic–Inorganic sol–gel Materials on the Optical Properties of Tripan Blue

    Get PDF
    The work reported in this paper highlights the effect of sol–gel structures on the optical properties of a typical organic dye (Trypan Blue, TB). Three transition-metal-based hybrid sol–gel materials with different structures and morphologies were developed and characterised by TEM. The optical properties of TB were investigated by incorporating it in the different sol–gel materials and the UV–Visible spectra recorded in both liquid and solid state, in thin-coatings cured at temperatures in the range 100– 150 [1]C. These studies revealed two relevant results. First, the sol–gel morphology plays a critical role in the optical properties of the dye. The effect of the sol–gel host matrix on the optical properties of the dye is attributed to the steric hindrance of the nanostructures, themselves intimately dependant on the reactivity of the transition metal. For instance, the less condensed system showed the highest reactivity with the dye, while the more condensed system exhibited limited interaction with the dye, symbolised by a significant change or quasi-unchanged UV–Visible spectra, respectively. It is also shown that the increase of the condensation degree of the sol–gel coatings by heat-curing can dramatically alter the optical properties of the dye especially for the most condensed sol–gel systems. This has been attributed to proximity effects enabled by the further increase of the materials densities. The results reported here aim to provide a better understanding of how material formulations can influence the optical properties of organic dyes and suggest that the structure of the host matrix along with the applied curing process have to be fully considered and assessed in the choice of organic dyes for a given application

    High Power, Low Frequency Ultrasound: Meniscal Tissue Interaction and Ablation Characteristics

    Get PDF
    Abstract—This study evaluates high power low frequency ultrasound transmitted via a flat vibrating probe tip as an alternative technology for meniscal debridement in the bovine knee. An experimental force controlled testing rig was constructed using a 20 kHz ultrasonic probe suspended vertically from a load cell. Effect of variation in amplitude of distal tip displacement (242–494 mm peak-peak) settings and force (2.5–4.5 N) on tissue removal rate (TRR) and penetration rate (PR) for 52 bovine meniscus samples was analyzed. Temperature elevation in residual meniscus was measured by embedded thermocouples and histologic analysis. As amplitude or force increases, there is a linear increase in TRR (Mean: 0.9 to 11.2 mg/s) and PR (Mean: 0.08 to 0.73 mm/s). Maximum mean temperatures of 84.6C and 52.3C were recorded in residual tissue at 2 mm and 4 mm from the ultrasound probe-tissue interface. There is an inverse relationship between both amplitude and force, and temperature elevation, with higher settings resulting in less thermal damage.

    Long term underwater sound measurements in the shipping noise indicator bands 63 Hz and 125 Hz from the port of Falmouth Bay, UK

    Get PDF
    PublishedThis is an open access article.Chronic low-frequency anthropogenic sound, such as shipping noise, may be negatively affecting marine life. The EU's Marine Strategy Framework Directive (MSFD) includes a specific indicator focused on this noise. This indicator is the yearly average sound level in third-octave bands with centre frequencies at 63 Hz and 125 Hz. These levels are described for Falmouth Bay, UK, an active port at the entrance to the English Channel. Underwater sound was recorded for 30 min h− 1 over the period June 2012 to November 2013 for a total of 435 days. Mean third-octave levels were louder in the 125-Hz band (annual mean level of 96.0 dB re 1 μPa) than in the 63-Hz band (92.6 dB re 1 μPa). These levels and variations are assessed as a function of seasons, shipping activity and wave height, providing comparison points for future monitoring activities, including the MSFD and emerging international regulation.This work is funded by the European Social Fund (ESF), the Peninsula Research Institute for Marine Renewable Energy (PRIMaRE; funded by the South West Regional Development Agency), MERiFIC (funded by the European Regional Development Fund through the Interreg IV-A programme), the Technology Strategy Board (TSB), and Fred Olsen Renewables. We are sincerely thankful to David Raymond and David Parish (U. of Exeter) for their technical support, particularly with mooring development and equipment maintenance and servicing and deployment through this project

    High power, low frequency ultrasound: meniscal tissue interaction and ablation characteristics

    Get PDF
    This study evaluates high power low frequency ultrasound transmitted via a flat vibrating probe tip as an alternative technology for meniscal debridement in the bovine knee. An experimental force controlled testing rig was constructed using a 20kHz ultrasonic probe suspended vertically from a load cell. Effect of variation in amplitude of distal tip displacement (242-494¾m peak-peak) settings and force (2.5-4.5N) on tissue removal rate (TRR) and penetration rate (PR) for fifty-two bovine meniscus samples was analyzed. Temperature elevation in residual meniscus was measured by embedded thermocouples and histological analysis. As amplitude or force increases, there is a linear increase in TRR (Mean: 0.9 to 11.2mg/s) and PR (Mean: 0.08 to 0.73mm/s). Maximum mean temperatures of 84.6°C and 52.3°C were recorded in residual tissue at 2mm and 4mm from the ultrasound probe-tissue interface. There is an inverse relationship between both amplitude and force, and temperature elevation, with higher settings resulting in less thermal damage

    Acoustic life cycle assessment of offshore renewables – implications from a Wave-Energy Converter deployment in Falmouth Bay, UK

    Get PDF
    Marine Renewable Energy is developing fast, with hundreds of prototypes andoperational devices worldwide. Two main challenges are assessing their environmental impacts (especially in near-shore, shallow environments) and ensuring efficient and effective maintenance (requiring specialised ships and fair-weather windows), compounded by the lack of long-term measurements of full-scale devices. We present here broadband measurements (10 Hz to 32/48 kHz) acquired at the Falmouth Bay Test site (FaBTest, UK) from 2010 onwards, for a 16-m ring-shaped Wave Energy Converter, in waters up to 45 m deep. This period covers baseline measurements, including shipping from the neighbouringEnglish Channel, one of the busiest shipping lanes in the world (ca. 45,000 ship transits annually) and the full period of installation and energy production, including maintenance episodes. Acoustic signatures are measured as Sound Pressure Levels (e.g. for impacts) and time/frequency variations (for condition-based monitoring via Acoustic Emissions). They change through time, depending on weather and modes of operation. Long-term measurements are compared with modelling of potential variations in this complex environment and with laboratory experiments. These are used to outline the varying acoustic contributions through the life cycle of a typical wave energy converter, yieldinginsights for other wave devices in other environments

    The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems

    Get PDF
    The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed

    Acquired A amyloidosis from injection drug use presenting with atraumatic splenic rupture in a hospitalized patient: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Little is known about splenic rupture in patients who develop systemic acquired A amyloidosis. This is the first report of a case of atraumatic splenic rupture in a patient with acquired A amyloidosis from chronic injection drug use.</p> <p>Case presentation</p> <p>A 58-year-old Caucasian man with a long history of injection drug use, hospitalized for infective endocarditis, experienced atraumatic splenic rupture and underwent splenectomy. Histopathological and microbiological analyses of the splenic tissue were consistent with systemic acquired A amyloidosis, most likely from injection drug use, that led to splenic rupture without any recognized trauma or evidence of bacterial embolization to the spleen.</p> <p>Conclusion</p> <p>In patients with chronic inflammatory conditions, including the use of injection drugs, who experience acute onset of left upper quadrant pain, the diagnosis of atraumatic splenic rupture must be considered.</p
    • …
    corecore