295 research outputs found

    On the Complexity of Random Quantum Computations and the Jones Polynomial

    Get PDF
    There is a natural relationship between Jones polynomials and quantum computation. We use this relationship to show that the complexity of evaluating relative-error approximations of Jones polynomials can be used to bound the classical complexity of approximately simulating random quantum computations. We prove that random quantum computations cannot be classically simulated up to a constant total variation distance, under the assumption that (1) the Polynomial Hierarchy does not collapse and (2) the average-case complexity of relative-error approximations of the Jones polynomial matches the worst-case complexity over a constant fraction of random links. Our results provide a straightforward relationship between the approximation of Jones polynomials and the complexity of random quantum computations.Comment: 8 pages, 4 figure

    Simulating Hamiltonian dynamics using many-qudit Hamiltonians and local unitary control

    Get PDF
    When can a quantum system of finite dimension be used to simulate another quantum system of finite dimension? What restricts the capacity of one system to simulate another? In this paper we complete the program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary control. By entangling we mean that every qudit is coupled to every other qudit, at least indirectly. We demonstrate that the only class of finite-dimensional entangling Hamiltonians that aren't universal for simulation is the class of entangling Hamiltonians on qubits whose Pauli operator expansion contains only terms coupling an odd number of systems, as identified by Bremner et. al. [Phys. Rev. A, 69, 012313 (2004)]. We show that in all other cases entangling many-qudit Hamiltonians are universal for simulation

    Quantum Sampling Problems, BosonSampling and Quantum Supremacy

    Full text link
    There is a large body of evidence for the potential of greater computational power using information carriers that are quantum mechanical over those governed by the laws of classical mechanics. But the question of the exact nature of the power contributed by quantum mechanics remains only partially answered. Furthermore, there exists doubt over the practicality of achieving a large enough quantum computation that definitively demonstrates quantum supremacy. Recently the study of computational problems that produce samples from probability distributions has added to both our understanding of the power of quantum algorithms and lowered the requirements for demonstration of fast quantum algorithms. The proposed quantum sampling problems do not require a quantum computer capable of universal operations and also permit physically realistic errors in their operation. This is an encouraging step towards an experimental demonstration of quantum algorithmic supremacy. In this paper, we will review sampling problems and the arguments that have been used to deduce when sampling problems are hard for classical computers to simulate. Two classes of quantum sampling problems that demonstrate the supremacy of quantum algorithms are BosonSampling and IQP Sampling. We will present the details of these classes and recent experimental progress towards demonstrating quantum supremacy in BosonSampling.Comment: Survey paper first submitted for publication in October 2016. 10 pages, 4 figures, 1 tabl

    Instantaneous Quantum Computation

    Full text link
    We examine theoretic architectures and an abstract model for a restricted class of quantum computation, called here instantaneous quantum computation because it allows for essentially no temporal structure within the quantum dynamics. Using the theory of binary matroids, we argue that the paradigm is rich enough to enable sampling from probability distributions that cannot, classically, be sampled from efficiently and accurately. This paradigm also admits simple interactive proof games that may convince a skeptic of the existence of truly quantum effects. Furthermore, these effects can be created using significantly fewer qubits than are required for running Shor's Algorithm.Comment: Significantly rewritten for clarity, more explanation adde

    Approximation Algorithms for Complex-Valued Ising Models on Bounded Degree Graphs

    Get PDF
    We study the problem of approximating the Ising model partition function with complex parameters on bounded degree graphs. We establish a deterministic polynomial-time approximation scheme for the partition function when the interactions and external fields are absolutely bounded close to zero. Furthermore, we prove that for this class of Ising models the partition function does not vanish. Our algorithm is based on an approach due to Barvinok for approximating evaluations of a polynomial based on the location of the complex zeros and a technique due to Patel and Regts for efficiently computing the leading coefficients of graph polynomials on bounded degree graphs. Finally, we show how our algorithm can be extended to approximate certain output probability amplitudes of quantum circuits.Comment: 12 pages, 0 figures, published versio

    Achieving quantum supremacy with sparse and noisy commuting quantum computations

    Get PDF
    The class of commuting quantum circuits known as IQP (instantaneous quantum polynomial-time) has been shown to be hard to simulate classically, assuming certain complexity-theoretic conjectures. Here we study the power of IQP circuits in the presence of physically motivated constraints. First, we show that there is a family of sparse IQP circuits that can be implemented on a square lattice of n qubits in depth O(sqrt(n) log n), and which is likely hard to simulate classically. Next, we show that, if an arbitrarily small constant amount of noise is applied to each qubit at the end of any IQP circuit whose output probability distribution is sufficiently anticoncentrated, there is a polynomial-time classical algorithm that simulates sampling from the resulting distribution, up to constant accuracy in total variation distance. However, we show that purely classical error-correction techniques can be used to design IQP circuits which remain hard to simulate classically, even in the presence of arbitrary amounts of noise of this form. These results demonstrate the challenges faced by experiments designed to demonstrate quantum supremacy over classical computation, and how these challenges can be overcome

    IQP Sampling and Verifiable Quantum Advantage: Stabilizer Scheme and Classical Security

    Full text link
    Sampling problems demonstrating beyond classical computing power with noisy intermediate-scale quantum (NISQ) devices have been experimentally realized. In those realizations, however, our trust that the quantum devices faithfully solve the claimed sampling problems is usually limited to simulations of smaller-scale instances and is, therefore, indirect. The problem of verifiable quantum advantage aims to resolve this critical issue and provides us with greater confidence in a claimed advantage. Instantaneous quantum polynomial-time (IQP) sampling has been proposed to achieve beyond classical capabilities with a verifiable scheme based on quadratic-residue codes (QRC). Unfortunately, this verification scheme was recently broken by an attack proposed by Kahanamoku-Meyer. In this work, we revive IQP-based verifiable quantum advantage by making two major contributions. Firstly, we introduce a family of IQP sampling protocols called the \emph{stabilizer scheme}, which builds on results linking IQP circuits, the stabilizer formalism, coding theory, and an efficient characterization of IQP circuit correlation functions. This construction extends the scope of existing IQP-based schemes while maintaining their simplicity and verifiability. Secondly, we introduce the \emph{Hidden Structured Code} (HSC) problem as a well-defined mathematical challenge that underlies the stabilizer scheme. To assess classical security, we explore a class of attacks based on secret extraction, including the Kahanamoku-Meyer's attack as a special case. We provide evidence of the security of the stabilizer scheme, assuming the hardness of the HSC problem. We also point out that the vulnerability observed in the original QRC scheme is primarily attributed to inappropriate parameter choices, which can be naturally rectified with proper parameter settings.Comment: 22 pages, 3 figure

    Interpersonal representations of touch in somatosensory cortex are modulated by perspective

    Get PDF
    Observing others being touched activates similar brain areas as those activated when one experiences a touch oneself. Event-related potential (ERP) studies have revealed that modulation of somatosensory components by observed touch occurs within 100 ms after stimulus onset, and such vicarious effects have been taken as evidence for empathy for others' tactile experiences. In previous studies body parts have been presented from a first person perspective. This raises the question of the extent to which somatosensory activation by observed touch to body parts depends on the perspective from which the body part is observed. In this study (N = 18), we examined the modulation of somatosensory ERPs by observed touch delivered to another person's hand when viewed as if from a first person versus a third person perspective. We found that vicarious touch effects primarily consist of two separable components in the early stages of somatosensory processing: an anatomical mapping for touch in first person perspective at P45, and a specular (mirror like) mapping for touch in third person perspective at P100. This is consistent with suggestions that vicarious representations exist to support predictions for one's own bodily events, but also to enable predictions of a social or interpersonal kind, at distinct temporal stages

    A practical scheme for quantum computation with any two-qubit entangling gate

    Get PDF
    Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-not (CNOT), are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. Here we present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this important result for systems of arbitrary finite dimension has been provided by J. L. and R. Brylinski [arXiv:quant-ph/0108062, 2001]; however, their proof relies upon a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical [C. M. Dawson and A. Gilchrist, online implementation of the procedure described herein (2002), http://www.physics.uq.edu.au/gqc/].Comment: 3 pages, online implementation of procedure described can be found at http://www.physics.uq.edu.au/gqc
    • …
    corecore