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Approximation Algorithms for Complex-Valued Ising Models on Bounded Degree
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We study the problem of approximating the Ising model partition function with complex pa-
rameters on bounded degree graphs. We establish a deterministic polynomial-time approximation
scheme for the partition function when the interactions and external fields are absolutely bounded
close to zero. Furthermore, we prove that for this class of Ising models the partition function does
not vanish. Our algorithm is based on an approach due to Barvinok for approximating evaluations
of a polynomial based on the location of the complex zeros and a technique due to Patel and Regts
for efficiently computing the leading coefficients of graph polynomials on bounded degree graphs.
Finally, we show how our algorithm can be extended to approximate certain output probability
amplitudes of quantum circuits.

I. INTRODUCTION

The Ising model partition function plays an impor-
tant role in combinatorics and statistical physics. In
this paper we study the problem of approximating the
Ising model partition function in the complex parameter
regime on bounded degree graphs. This work is moti-
vated by the close relationship to quantum computation,
where it can be shown that approximate evaluations of
these partition functions can encode arbitrary quantum
computations [1]. A classic result of Jaeger, Vertigan,
and Welsh [2] showed that exactly evaluating these par-
tition functions is #P-hard. This was shown to remain
true in the approximate case [3] and when restricted to
graphs of bounded degree [4]. Therefore, it seems un-
likely that an efficient algorithm exists for approximating
the partition function for general parameters on bounded
degree graphs. Furthermore, it has been conjectured that
this problem remains hard on average over certain classes
of interactions and external fields [5–7]. Resolving these
conjectures is important for understanding the complex-
ity of quantum computing.

We establish a deterministic polynomial-time approx-
imation scheme for the Ising model partition function
on bounded degree graphs when the interactions and
external fields are absolutely bounded close to zero
(Corollary 6). This provides a lower bound on when the
interactions and external fields cause approximations of
the Ising model partition function to transition from be-
ing contained in P to being #P-hard. Our algorithm is
based on an approach due to Barvinok [8–10] for approx-
imating evaluations of a polynomial based on the loca-
tion of the complex zeros and a technique due to Patel
and Regts [11] for efficiently computing the leading coef-
ficients of graph polynomials on bounded degree graphs.

∗ mail@ryanmann.org; http://www.ryanmann.org

Barvinok’s approach considers the Taylor expansion of
the logarithm of a polynomial about an easy to evaluate
point. Suppose that we can show that the complex zeros
of the polynomial lie in the exterior of a closed disc cen-
tred at this point, then it follows that a truncated Taylor
expansion provides an additive approximation to the log-
arithm of the polynomial at any point in the interior of
this closed disc. Now observe that an additive approxi-
mation of the logarithm of a polynomial corresponds to
a multiplicative approximation of the polynomial.

To construct an algorithm from this approach we
need to be able to compute the coefficients of the trun-
cated Taylor expansion. Barvinok showed that comput-
ing these coefficients can be reduced to computing the
leading coefficients of the polynomial itself. However,
to achieve the accuracy required for an approximation
scheme, we require a number of leading coefficients that
is logarithmic in the degree of the polynomial. For many
combinatorial structures, directly computing these coef-
ficients requires quasi-polynomial time.

Patel and Regts [11] showed that, for several classes of
graph polynomials on bounded degree graphs, the leading
coefficients can be computed in polynomial time. Their
approach is based on expressing the coefficients as linear
combinations of connected induced subgraph counts of
size logarithmic in the size of the graph. It then follows
from a result due to Borgs et al. [12], which states that,
for bounded degree graphs, we can efficiently enumerate
all connected induced subgraphs of logarithmic size.

Barvinok and Soberón [13] established a deterministic
quasi-polynomial time algorithm for approximating the
multivariate graph homomorphism partition function on
bounded degree graphs when the matrix entries are abso-
lutely bounded close to one. In the case that all matrix
entries are exactly equal to one, the partition function
is easy to evaluate. Barvinok and Soberón proved that
for bounded degree graphs when the matrix entries are
absolutely bounded close to one, the partition function
does not vanish. Finally, they proved that the leading
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coefficients can be computed in quasi-polynomial time.
Patel and Regts [11] improved this to a deterministic
polynomial-time algorithm by showing that the coeffi-
cients can be expressed as linear combinations of con-
nected induced subgraph counts.

In order to establish a polynomial-time approximation
scheme for the Ising model partition function, we provide
an approximation-preserving polynomial-time reduction
to a restricted version of the multivariate graph homo-
morphism partition function (Proposition 5). We ex-
tend the results of Barvinok and Soberón [13] and Patel
and Regts [11] to give an algorithm for approximating
this restricted version of the multivariate graph homo-
morphism partition function on bounded degree graphs
when the matrix entries are absolutely bounded close to
one (Theorem 1). As a consequence, we obtain a deter-
ministic polynomial-time approximation scheme for the
Ising model partition function on bounded degree graphs
when the interactions and external fields are absolutely
bounded sufficiently close to zero. Furthermore, we prove
that in this case the Ising model partition function does
not vanish (Corollary 7). This may be of independent in-
terest in statistical physics as the possible points of phys-
ical phase transitions are exactly the real limit points of
complex zeros [14].

Previous work by Liu, Sinclair, and Srivastava [15]
studied the problem of approximating the ferromagnetic
Ising model partition function based on the location of
complex zeros. They gave a deterministic polynomial-
time approximation scheme for the Ising model parti-
tion function in the ferromagnetic regime for all com-
plex external fields that are not purely imaginary. This
can be seen as an algorithmic consequence of the clas-
sic Lee-Yang Theorem [16], which states that the ferro-
magnetic Ising model partition function does not vanish
except when the external fields are purely imaginary. Pe-
ters and Regts [17] generalised this result by determining
the exact location of zeros in the ferromagnetic and anti-
ferromagnetic regime as a function of the inverse temper-
ature and the maximum degree.

Further work has considered the problem of approx-
imating the Ising model partition function on bounded
degree graphs based on the decay of correlations prop-
erty. Sinclair, Srivastava, and Thurley [18] established a
deterministic polynomial-time approximation scheme for
the anti-ferromagnetic Ising model partition function on
graphs of maximum degree at most ∆ when the interac-
tions and external fields lie in the uniqueness region of
the Gibbs measure on the infinite ∆-regular tree, which
is exactly the region that the decay of correlation prop-
erty holds. Sly and Sun [19] showed that for interactions
outside of this region, unless RP=NP, there is no fully
polynomial-time randomised approximation scheme for
the anti-ferromagnetic Ising model partition function on
graphs of maximum degree at most ∆ ≥ 3. Indepen-
dent work by Galanis, Štefankovič, and Vigoda [20] es-
tablished a similar result in the case of no external field.
Liu, Sinclair, and Srivastava [21] showed that, in the case

of no external field, the Ising model partition function has
no zeros in a complex neighbourhood of the decay of cor-
relation regime. This establishes a formal relationship
between these two approaches.

Our final result is a polynomial-time algorithm for
approximating certain output probability amplitudes of
quantum circuits (Corollary 9). This algorithm is based
on the observation that complex-valued Ising model par-
tition functions arise in the output probability ampli-
tudes of quantum circuits [1, 22]. We focus on a class
of commuting quantum circuits, known as Instantaneous
Quantum Polynomial-time (IQP) circuits [23], where the
mapping to the Ising model partition function is the
most straightforward [4, 23, 24]. Bremner, Montanaro,
and Shepherd [25] showed that general IQP circuits can-
not be efficiently classically simulated under the assump-
tion that the Polynomial Hierarchy does not collapse
and the Ising model partition function is #P-hard on
average over certain classes of interactions and exter-
nal fields. Furthermore, IQP circuits are known to be-
come universal for quantum computation under postse-
lection [26], therefore, approximating output probability
amplitudes of IQP circuits is equivalent to approximating
output probability amplitudes of universal quantum cir-
cuits. Our algorithm allows us to approximate a certain
output probability amplitude of a quantum circuit when
the corresponding graph has bounded degree and the
interactions and external fields are absolutely bounded
close to zero. Eldar and Mehraban [27] used a similar
approach to derive a quasi-polynomial time algorithm for
approximating the permanent of a random matrix with
unit variance and vanishing mean in the context of linear
optical quantum computing.

This paper is structured as follows. In Section II, we
introduce the multivariate graph homomorphism parti-
tion function and establish a deterministic polynomial-
time algorithm for approximating a restricted version of
this partition function on bounded degree graphs when
the matrix entries are absolutely bounded close to one.
In Section III, we provide an approximation-preserving
polynomial-time reduction from the Ising model parti-
tion function to this restricted version of the multivariate
graph homomorphism partition function. We then use
this reduction to establish a deterministic polynomial-
time approximation scheme for the Ising model partition
function on bounded degree graphs when the interactions
and external fields are absolutely bounded sufficiently
close to zero. In this regime, we prove that the parti-
tion function does not vanish. In Section IV, we show
how our algorithm can be extended to approximate cer-
tain output probability amplitudes of quantum circuits.
Finally, we conclude in Section V with some remarks and
open problems.
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II. GRAPH HOMOMORPHISM PARTITION
FUNCTIONS

A graph homomorphism between two graphs G and H
is an adjacency-preserving map between the vertex sets,
i.e., a map h : V (G)→ V (H) such that {u, v} ∈ E(G)
implies {h(u), h(v)} ∈ E(H). Graph homomorphisms
generalise the notion of graph colouring [28]; for example,
a graph homomorphism from a graph G to the complete
graph Kq is equivalent to a proper q-colouring of G.

Hell and Nešetřil [29] proved that the problem of decid-
ing if a homomorphism between two graphs G and H ex-
ists is NP-complete. Dyer and Greenhill [30] showed that
the corresponding counting problem is #P-hard, unless
the graph has some special structure; otherwise it is in
P. Furthermore, they showed that this problem remains
#P-hard when restricted to graphs of bounded degree.
The graph homomorphism partition function is defined
as follows.

Definition 1 (Graph homomorphism partition func-
tion). Let G = (V,E) be a graph and let A = (aij)m×m
be a m ×m symmetric matrix. Then the graph homo-
morphism partition function is defined by

Hom(G;A) :=
∑

φ:V→[m]

∏
{u,v}∈E

aφ(u)φ(v).

The graph homomorphism partition function evaluates
to many important combinatorial quantities, including
counting the number of graph homomorphisms, proper
colourings, and independent sets [10].

The complexity of computing graph homomorphism
partition functions has been widely studied. Dyer and
Greenhill [30] showed that computing Hom(G;A) when
A is a fixed symmetric binary matrix is either in P or
#P-hard. Moreover, they showed that these hardness
results hold even for graphs of maximum degree three.
These results were later generalised to non-negative sym-
metric matrices [31], real symmetric matrices [32], and
complex symmetric matrices [33]. Furthermore, the
tractability criterion for the matrix is decidable in poly-
nomial time.

The graph homomorphism partition function can be
generalised by assigning a m × m symmetric matrix to
each edge. The multivariate graph homomorphism parti-
tion function is defined as follows.

Definition 2 (Multivariate graph homomorphism parti-
tion function). Let G = (V,E) be a graph with the m×m
symmetric matrices A = {(aeij)m×m}e∈E assigned to its
edges. Then the multivariate graph homomorphism par-
tition function is defined by

HomM(G;A) :=
∑

φ:V→[m]

∏
{u,v}∈E

a
{u,v}
φ(u)φ(v).

When the matrices are all equal, it is clear that the
multivariate and standard graph homomorphism parti-
tion functions are equivalent.

For convenience, let us define the polydisc consisting of
all sets of m×m symmetric matrices with matrix entries
absolutely bounded close to one.

Definition 3 (DG,m(δ)). For a graph G = (V,E),
m ∈ Z+, and δ > 0, we define DG,m(δ) to be the closed
polydisc consisting of all sets of m × m symmetric ma-
trices A = {(aeij)m×m}e∈E , such that

∣∣1− aeij∣∣ ≤ δ for all
e ∈ E and all i, j ∈ [m].

Barvinok and Soberón [13] gave a quasi-polynomial
time algorithm for approximating HomM(G;A) when G
is a graph of maximum degree at most ∆ and A lies in the
interior of the closed polydisc DG,m (δ∆). Here, δ∆ > 0 is
an absolute constant. The absolute constants come from
Barvinok’s monograph [10], where a simpler proof was
presented with better constants. Patel and Regts [11]
improved this algorithm to run in polynomial time.

Definition 4 (δ∆). For ∆ ∈ Z+, we define the absolute
constant δ∆ by

δ∆ := max
0<α< 2π

3∆

[
sin
(α

2

)
cos

(
α∆

2

)]
.

Remark. A simple numerical search gives δ3 = 0.18,
δ4 = 0.13, δ5 = 0.11, and δ6 = 0.09. In general, we have
δ∆ = Ω(1/∆).

We shall consider a restricted version of the multivari-
ate graph homomorphism partition function, in which the
sum is restricted to map a subset of vertices to a fixed
index.

Definition 5 (Restricted multivariate graph homomor-
phism partition function). Let G = (V,E) be a graph
with the m×m symmetric matrices A = {(aeij)m×m}e∈E
assigned to its edges. Further let S ⊆ V be a subset of
V and let k ∈ [m] be an integer. Then the restricted
multivariate graph homomorphism partition function is
defined by

HomM(G,S, k;A) :=
∑

φ:V→[m]
φ(s)=k,∀s∈S

∏
{u,v}∈E

a
{u,v}
φ(u)φ(v).

The advantage of considering the restricted multi-
variate graph homomorphism partition function is that,
when reduced from the Ising partition function, it will
allows us to implement an external magnetic field. This
reduction is described in detail in Appendix D.

We extend the results of Barvinok and Soberón [13]
and Patel and Regts [11] to give a deterministic
polynomial-time approximation scheme for the restricted
multivariate graph homomorphism partition function.
We have the following theorem.

Theorem 1. Fix ∆ ∈ Z+ and 0 < δ < δ∆. There is
a deterministic polynomial-time approximation scheme
for the restricted multivariate graph homomorphism
partition function HomM(G,S, k;A) for all graphs
G = (V,E) of maximum degree at most ∆ and all
A = {(aeij)m×m}e∈E in the closed polydisc DG,m (δ).
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We prove Theorem 1 in Appendix A. Our proof re-
quires a result of Barvinok [10, Theorem 7.1.4], which
states that HomM(G,S, k;A) does not vanish on graphs
of maximum degree at most ∆ when A lies in the interior
of the closed polydisc DG,m (δ∆).

Lemma 2 (Barvinok [10]). Fix ∆ ∈ Z+. For any
graph G = (V,E) of degree at most ∆ and any
A = {(aeij)m×m}e∈E in the closed polydisc DG,m (δ∆),
the restricted multivariate graph homomorphism parti-
tion function does not vanish, i.e., HomM(G,S, k;A) 6= 0
for all S ⊆ V and all k ∈ [m].

Our proof also requires the following lemma, which
states that we can efficiently compute the con-
stant term and inverse power sums of the roots of
HomM(G,S, k;A(z)).

Lemma 3. Fix ∆ ∈ Z+, 0 < ε < 1, and C > 0.
Let G = (V,E) be a graph of maximum degree
at most ∆ with the m × m symmetric matrices
A(z) = {(1 + z(aeij − 1))m×m}e∈E assigned to its edges.

Further let {ri}|E|i=1 be the roots of the polynomial
P (G,S, k; z) := HomM(G,S, k;A(z)). Then there is a
deterministic (|V | /ε)O(1)-time algorithm for computing

P (G,S, k, 0) and the inverse power sums
{∑|E|

i=1 r
−j
i

}m
j=1

for m = C log(|V | /ε).

We prove Lemma 3 in Appendix B. For convenience,
let us define the closed disc D of radius δ centred at the
origin.

Definition 6 (D(δ)). For δ > 0, we define D(δ) to be
the closed disc consisting of all complex numbers z, such
that |z| ≤ δ.

Finally, we require the following lemma, which arises
from the error analysis of Barvinok’s interpolation
method [8, 9] (see Barvinok [10, Lemma 2.2.1]). The
lemma states that, in order to get a multiplicative ap-
proximation to a polynomial inside its zero-free disc, it
is sufficient to compute the constant term and inverse
power sums of its roots.

Lemma 4 (Barvinok [8–10]). Fix 0 < ε < 1. Let {ri}ni=1

be the roots of the polynomial p(z) :=
∑n
k=0 akz

k. Sup-
pose that, for some δ > 0, the roots of p lie in the exte-
rior of the closed disc D(δ). Suppose further that we can

compute a0 and the inverse power sums
{∑n

i=1 r
−j
i

}m
j=1

in time τ(m). Then, for any t in the interior of
the closed disc D(δ), we can compute a multiplicative

ε-approximation to p(t) in time O
[
τ
(

log(n/ε)
1−|t|/δ

)]
.

We prove Lemma 4 in Appendix C.

III. ISING MODEL PARTITION FUNCTIONS

The Ising model is described by a graph G = (V,E),
with the vertices representing spins and the edges repre-
senting interactions between them. A set of edge weights

{ωe}e∈E characterise the interactions and a set of vertex
weights {υv}v∈V characterise the external fields at each
spin. A configuration of the model is an assignment σ
of each spin to one of two possible states {−1,+1}. The
Ising model partition function is defined as follows.

Definition 7 (Ising model partition function). Let
G = (V,E) be a graph with the weights Ω = {ωe}e∈E as-
signed to its edges and the weights Υ = {υv}v∈V assigned
to its vertices. Then the Ising model partition function
is defined by

ZIsing(G; Ω,Υ) :=
∑

σ∈{−1,+1}V
wG(σ),

where

wG(σ) = exp

 ∑
{u,v}∈E

ω{u,v}σuσv +
∑
v∈V

υvσv

 .

The model is called ferromagnetic if ωe > 0 for all
e ∈ E and anti-ferromagnetic if ωe < 0 for all e ∈ E.
Otherwise, the model is called non-ferromagnetic.

A classic result of Jerrum and Sinclair [34] establishes a
fully polynomial-time randomised approximation scheme
for the Ising model partition function for all graphs in
the ferromagnetic regime with real vertex weights. In
contrast, they showed that no such scheme could exists
in the anti-ferromagnetic regime unless RP=NP. Fur-
thermore, they showed that exactly computing the Ising
model partition function is #P-hard.

We shall extend the result of Theorem 1 to the
Ising model partition function. This is achieved by
an approximation-preserving polynomial-time reduction
from the Ising model partition function to the restricted
multivariate graph homomorphism partition function.

Proposition 5. There is an approximation-preserving
polynomial-time reduction from the Ising model partition
function to the restricted multivariate graph homomor-
phism partition function.

We prove Proposition 5 in Appendix D. Let us define
the following closed polyregion, which arises naturally
from applying Proposition 5 to Theorem 1.

Definition 8 (RG(δ)). For a graph G = (V,E) and
δ > 0, we define RG(δ) to be the closed polyregion
consisting of all sets of weights Ω = {ωe}e∈E and
Υ = {υv}v∈V , such that |1− e±ωe | ≤ δ for all e ∈ E and
|1− e±υv | ≤ δ for all v ∈ V .

We have the following corollary of Theorem 1 and
Proposition 5.

Corollary 6. Fix ∆ ∈ Z+ and 0 < δ < δ∆+1. There is a
deterministic polynomial-time approximation scheme for
the Ising model partition function ZIsing(G; Ω,Υ) for all
graphs G = (V,E) of maximum degree at most ∆ and all
Ω = {ωe}e∈E and all Υ = {υv}v∈V in the closed polyre-
gion RG (δ).
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Proof. The proof follows directly from Theorem 1 and
Proposition 5, while noting that the reduction from the
Ising model partition to the restricted multivariate graph
homomorphism partition function increases the maxi-
mum vertex degree by one. �

Remark. It is possible to marginally increase the size of
the polyregion by applying the k-thickening technique of
Jaeger, Vertigan, and Welsh [2].

It is important to mention that the bounds of
Corollary 6 are not sharp in general. To see this, let
us compare the results in the anti-ferromagnetic regime
with no external field, to those of Sinclair, Srivastava,
and Thurley [18]. In this case, Corollary 6 tells us that
there is a deterministic polynomial-time approximation
scheme for the Ising model partition function on graphs
of maximum degree at most ∆ when ωe > − log(δ∆ + 1)
for all e ∈ E (noting that in the case of no external field
the reduction preserves maximum degree). The results of
Sinclair, Srivastava, and Thurley [18] give a deterministic
polynomial-time approximation scheme when ∆ ≥ 3 and

ωe > − 1
2 log

(
∆

∆−2

)
for all e ∈ E. Hence, the bound of

Corollary 6 is not sharp. It is an open problem to prove
a sharp bound in the complex case.

We also have the following corollary concerning the
location of the complex zeros of the Ising model partition
function on bounded degree graphs.

Corollary 7. Fix ∆ ∈ Z+. For any graph G = (V,E)
of degree at most ∆ and any Ω = {ωe}e∈E and
Υ = {υv}v∈V in the closed polyregion RG (δ∆+1), the
Ising model partition function does not vanish, i.e.,
ZIsing(G; Ω,Υ) 6= 0.

Proof. The proof follows directly from Lemma 2 and
Proposition 5. �

This may be of independent interest in statistical
physics as the possible points of physical phase transi-
tions are exactly the real limit points of such complex
zeros [14].

IV. QUANTUM SIMULATION

Complex-valued Ising model partition functions arise
naturally in the output probability amplitudes of quan-
tum circuits [1, 22]. In particular, for the class of com-
muting quantum circuits, known as Instantaneous Quan-
tum Polynomial-time (IQP) circuits [4, 23, 24]. In this
section we shall show how the results of Corollary 6 allow
us to approximate output probability amplitudes of IQP
circuits and, more generally, universal quantum circuits.
First introduced by Shepherd and Bremner [23], IQP cir-
cuits comprise only gates that are diagonal in the Pauli-X
basis. An IQP circuit is described by an X-program.

Definition 9 (X-program). An X-program is a pair
(P, θ), where P = (pij)m×n is a binary matrix and

θ ∈ [−π, π] is a real angle. The matrix P is used to con-
struct a Hamiltonian of m commuting terms acting on n
qubits, where each term in the Hamiltonian is a product
of Pauli-X operators,

H(P,θ) := −θ
m∑
i=1

n⊗
j=1

X
pij
j .

Thus, the columns of P correspond to qubits and the
rows of P correspond to interactions in the Hamiltonian.

An X-program induces a probability distribution P(P,θ)

known as an IQP distribution.

Definition 10 (P(P,θ)). For an X-program (P, θ) with
P = (pij)m×n, we define P(P,θ) to be the probability dis-
tribution over binary strings x ∈ {0, 1}n, given by

Pr[x] :=
∣∣〈x| exp

(
−iH(P,θ)

)
|0n〉

∣∣2 .
We shall consider X-programs that are induced by a

weighted graph.

Definition 11 (Graph-induced X-program). For a graph
G = (V,E) with the weights {ωe ∈ [−π, π]}e∈E assigned
to its edges and the weights {υv ∈ [−π, π]}v∈V assigned
to its vertices, we define the X-program induced by G to
be an X-program XG such that

HXG = −
∑

{u,v}∈E

ω{u,v}XuXv −
∑
v∈V

υvXv.

It will be convenient for us to define ψG as a specific
probability amplitude induced by a weighted graph G.

Definition 12 (ψG). For a graph G = (V,E) with the
weights {ωe ∈ [−π, π]}e∈E assigned to its edges and the
weights {υv ∈ [−π, π]}v∈V assigned to its vertices, we de-
fine ψG to be the probability amplitude given by

ψG :=
〈

0|V |
∣∣∣ exp (−iHXG)

∣∣∣0|V |〉 .
We note that any X-program can be efficiently repre-

sented by a graph-induced X-program [23]. Moreover,
X-programs are known to become universal for quan-
tum computation under postselection [26]. Therefore,
any quantum amplitude can be expressed in the form of
ψG. The output probability amplitudes of such a graph-
induced X-program are proportional to Ising model par-
tition functions with imaginary weights.

Proposition 8. Let G = (V,E) be a graph with the
weights Ω = {ωe ∈ [−π, π]}e∈E assigned to its edges and
the weights Υ = {υv ∈ [−π, π]}v∈V assigned to its ver-
tices, then,

ψG =
1

2|V |
ZIsing(G; iΩ, iΥ).

We prove Proposition 8 in Appendix E. We now ap-
ply Corollary 6 to Proposition 8 to achieve a determin-
istic polynomial-time approximation scheme for comput-
ing ψG for all graphs of bounded maximum degree with
weights absolutely bounded sufficiently close to zero.
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Corollary 9. Fix ∆ ∈ Z+ and 0 < δ < δ∆+1. There is a
deterministic polynomial-time approximation scheme for
the probability amplitude ψG for all graphs G = (V,E)
of maximum degree at most ∆ with the edge weights
{ωe ∈ [−π, π]}e∈E satisfying |ωe| ≤ 2 arcsin(δ/2) for all
e ∈ E and the vertex weights {υv ∈ [−π, π]}v∈V satisfy-
ing |υv| ≤ 2 arcsin(δ/2) for all v ∈ V .

Proof. It follows from Corollary 6 and Proposition 8 that
we have a deterministic polynomial-time approximation
scheme for computing ψG for all graphs of maximum de-
gree at most ∆ with Ω = {iωe}e∈E and Υ = {iυv}v∈V in
the closed polyregion RG (δ). For weights in the range
[−π, π], this is achieved when |ωe| ≤ 2 arcsin(δ/2) for all
e ∈ E and |υv| ≤ 2 arcsin(δ/2) for all v ∈ V . This com-
pletes the proof. �

It is known that approximating ψG up to a multi-
plicative factor for bounded degree graphs with arbitrary
weights in [−π, π] is #P-hard [4], and so it seems un-
likely that Corollary 9 can be extended to hold in this
case. We note that Corollary 9 applies to graph-induced
X-programs with weights absolutely bounded by a con-
stant that depends only on the maximum degree of the
underlying graph. This corresponds to Hamiltonians that
have been evolved for up to a constant time and Hamil-
tonians that exhibit limited interference. Furthermore,
Corollary 9 applies to classes of graphs with treewidth
growing as the square root of the number of vertices; for
example, square lattices. For classes of graphs with loga-
rithmic treewidth a deterministic polynomial-time algo-
rithm is known [35].

V. CONCLUSION & OUTLOOK

We have established a deterministic polynomial-time
approximation scheme for the Ising model partition func-
tion with complex parameters on bounded degree graphs
when the interactions and external fields are absolutely
bounded by a constant depending on the maximum de-
gree of the graph. Furthermore, we have proven that the
partition function does not vanish for this class of Ising
models. Finally, we have shown how our algorithm can
be extended to approximate certain output probability
amplitudes of quantum circuits.

There are a number of interesting problems that re-
main to be solved, the most obvious of which is to
sharpen the bounds of Corollary 6. One approach would
be to improve Lemma 2, i.e., prove that the restricted
multivariate graph homomorphism partition function
does not vanish on a polydisc of a greater radius. It
may also be possible to prove sharper bounds for specific
graphs of interest. An alternative approach would be to
use decay of correlation based arguments [18, 36, 37]. It
is an important open problem to understand the rela-
tionship between the location of complex zeros, decay of
correlations, and the computational complexity of a func-
tion. The work of Liu, Sinclair, and Srivastava [21] makes
significant progress towards resolving this problem.
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Appendix A: Proof of Theorem 1

We shall now prove Theorem 1.

Theorem 1 (restatement). Fix ∆ ∈ Z+ and 0 < δ < δ∆. There is a deterministic polynomial-time approxima-
tion scheme for the restricted multivariate graph homomorphism partition function HomM(G,S, k;A) for all graphs
G = (V,E) of maximum degree at most ∆ and all A = {(aeij)m×m}e∈E in the closed polydisc DG,m (δ).

Proof. Define P (G,S, k; z) := HomM(G,S, k;A(z)), with A(z) = {(1 + z(aeij − 1))m×m}e∈E and note that A = A(1).
By Lemma 2, we have that P (G,S, k; z) does not vanish whenever A(z) lies in the closed polydisc DG,m(δ∆). Since

A(1) lies in the closed polydisc DG,m(δ), P (G,S, k; z) does not vanish for all |z| ≤ δ∆/δ. Let {ri}|E|i=1 be the roots
of P (G,S, k; z). Then, by setting C = (1− δ/δ∆)−1 in Lemma 3, we have that, for any 0 < ε < 1, there is a de-

terministic (|V | /ε)O(1)-time algorithm for computing P (G,S, k; 0) and the inverse power sums
{∑|E|

i=1 r
−j
i

}m
j=1

for

m = (1− δ/δ∆)−1 log(|V | /ε). Then, it follows from Lemma 4 that there is a deterministic (|V | /ε)O(1)-time algo-
rithm for computing a multiplicative ε-approximation to P (G,S, k; z) for all |z| < δ∆/δ. Since δ < δ∆, we can take
z = 1. Hence, we have a deterministic polynomial-time algorithm for computing a multiplicative ε-approximation to
HomM(G,S, k;A). This completes the proof. �
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Appendix B: Proof of Lemma 3

We shall now prove Lemma 3. Our proof follows from a generalisation of a result due to Patel and Regts [11]
(Lemma 11) and an additional lemma (Lemma 12), which we prove in the remainder of the section.

Lemma 3 (restatement). Fix ∆ ∈ Z+, 0 < ε < 1, and C > 0. Let G = (V,E) be a graph of maximum degree at most

∆ with the m ×m symmetric matrices A(z) = {(1 + z(aeij − 1))m×m}e∈E assigned to its edges. Further let {ri}|E|i=1

be the roots of the polynomial P (G,S, k; z) := HomM(G,S, k;A(z)). Then there is a deterministic (|V | /ε)O(1)-time

algorithm for computing P (G,S, k, 0) and the inverse power sums
{∑|E|

i=1 r
−j
i

}m
j=1

for m = C log(|V | /ε).

Proof. The proof follows from combining Lemma 11 and Lemma 12. �

We shall begin with the following definitions.

Definition 13 (Gn). For n ∈ Z+, define Gn to be the collection of all edge-coloured graphs on at most n vertices.

Definition 14 (G[U ]). For a graph G and a subset of vertices U ⊆ V (G), define G[U ] to be the subgraph induced
by U .

Definition 15 (IndC(G,H)). For two edge-coloured graphs G and H, define IndC(G,H) to be the number of induced
subgraphs of G that are edge-colour isomorphic to H.

Definition 16 (Multiplicative graph polynomial). A graph polynomial P (G; z) is said to be multiplicative if
P (∅; z) = 1 and P (G ∪H; z) = P (G; z)P (H; z) for any two graphs G and H.

Definition 17 (Edge-coloured bounded induced graph counting polynomial [11]). Let P (G; z) be a multiplicative

graph polynomial defined by P (G; z) :=
∑d(G)
n=0 αG,nz

n with P (G; 0) = 1. We say that P (G; z) is an edge-coloured
bounded induced graph counting polynomial if there exists constants µ, ν ∈ Z+, such that (1) the coefficients αG,n sat-

isfy αG,n =
∑
H∈Gµn βH,nInd(H,G), for certain βH,n and (2) the coefficients βH,n can be computed in time O

(
ν|V (H)|).

Patel and Regts [11, Theorem 3.10] proved that, for any edge-coloured bounded induced graph counting polynomial,
there is an efficient algorithm for computing the constant term and inverse power sums of its roots.

Lemma 10 (Patel and Regts [11]). Fix ∆ ∈ Z+, 0 < ε < 1, and C > 0. Let G = (V,E) be an edge-coloured graph
of maximum degree at most ∆. Further let P (G; z) be an edge-coloured bounded induced graph counting polynomial

with roots {ri}deg(P )
i=1 . Then there is a deterministic (|V | /ε)O(1)-time algorithm for computing P (G, 0) and the inverse

power sums
{∑deg(P )

i=1 r−ji

}m
j=1

for m = C log(|V | /ε).

We shall now generalise the result of Patel and Regts [11] to the restricted case, that is, where the graph polynomial
is restricted to map a subset of vertices to a fixed index. We begin by extending the previous definitions.

Definition 18 (Restricted graph). A restricted graph is a pair (G,S), where G = (V,E) is a graph and S ⊆ V is a
subset of V .

Definition 19 (Rn). For n ∈ Z+, define Rn to be the collection of all edge-coloured restricted graphs on at most n
vertices.

Definition 20 (Induced restricted subgraph). For a restricted graph (G,S) and a subset of vertices U ⊆ V (G), the
restricted subgraph induced by U is given by (G[U ], S ∩ U).

Definition 21 (Isomorphic restricted graphs). Two restricted graphs (G,S) and (H,T ) are said to be isomorphic if
and only if there is an isomorphism ϕ from G to H and T is the image of S under ϕ.

Definition 22 (IndC [(G,S), (H,T )]). For two edge-coloured restricted graphs (G,S) and (H,T ), define
IndC [(G,S), (H,T )] to be the number of induced restricted subgraphs of (G,S) that are edge-colour isomorphic
to (H,T ).

Definition 23 (Multiplicative restricted graph polynomial). A restricted graph polynomial P (G,S, k; z) is said to be
multiplicative if P (∅,∅, k; z) = 1 and P (G ∪H,S ∪ T, k; z) = P (G,S, k; z)P (H,T, k; z) for any two restricted graphs
(G,S) and (H,T ) and integer k ∈ Z+.
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Definition 24 (Edge-coloured bounded induced restricted graph counting polynomial). Let P (G,S, k; z) be a mul-

tiplicative restricted graph polynomial defined by P (G,S, k; z) :=
∑d(G)
n=0 αG,S,k,nz

n with P (G,S, k; 0) = 1. We say
that P (G,S, k; z) is an edge-coloured bounded induced restricted graph counting polynomial if there exists constants
µ, ν ∈ Z+, such that (1) the coefficients αG,S,k,n satisfy αG,S,k,n =

∑
(H,T )∈Rµn βH,T,k,nIndC [(G,S), (H,T )], for cer-

tain βH,T,k,n and (2) the coefficients βH,T,k,n can be computed in time O
(
ν|V (H)|).

The restricted version of Lemma 10 is then obtained by following the proof of Patel and Regts [11] with the
definitions extended in the natural way. We omit the proof for the sake of brevity.

Lemma 11. Fix ∆ ∈ Z+, 0 < ε < 1, and C > 0. Let G = (V,E) be an edge-coloured graph of maximum degree at
most ∆. Further let P (G,S, k; z) be an edge-coloured bounded induced restricted graph counting polynomial with roots

{ri}deg(P )
i=1 . Then there is a deterministic (|V | /ε)O(1)-time algorithm for computing P (G,S, k, 0) and the inverse power

sums
{∑deg(P )

i=1 r−ji

}m
j=1

for m = C log(|V | /ε).

Lemma 12. Let G = (V,E) be a graph with the m×m symmetric matrices A(z) = {(1 + z(aeij − 1))m×m}e∈E assigned
to its edges and let each edge e ∈ E be assigned a distinct colour. Further let S ⊆ V be a subset of V and let k ∈ [m]
be an integer. Then, up to an efficiently computable factor, the restricted multivariate graph homomorphism partition
function HomM(G,S, k;A(z)) is an edge-coloured bounded induced graph counting polynomial.

Proof. Define P (G,S, k; z) by

P (G,S, k; z) := m−|V \S|HomM(G,S, k;A(z)).

Then,

P (G,S, k; z) = m−|V \S|
∑

φ:V→[m]
φ(s)=k,∀s∈S

∏
{u,v}∈E

[
1 + z

(
a
{u,v}
φ(u)φ(v) − 1

)]

= m−|V \S|
|E|∑
n=0

zn
∑
F⊆E
|F |=n

 ∑
φ:V→[m]

φ(s)=k,∀s∈S

∏
{u,v}∈F

(
a
{u,v}
φ(u)φ(v) − 1

)

=

|E|∑
n=0

zn
∑
F⊆E
|F |=n

m−|V (G[F ])\S|
∑

φ:V (G[F ])→[m]
φ(s)=k,∀s∈(S∩V (G[F ]))

∏
{u,v}∈F

(
a
{u,v}
φ(u)φ(v) − 1

) ,
where G[F ] is the subgraph of G induced by F . Since the number of vertices in G[F ] is at most 2 |F |, we can write

P (G,S, k; z) =

|E|∑
n=0

zn
∑

(H,T )∈R2n

|E(H)|=n

m−|V (H)\T |
∑

φ:V (H)→[m]
φ(t)=k,∀t∈T

∏
{u,v}∈E(H)

(
a
{u,v}
φ(u)φ(v) − 1

) IndC [(G,S), (H,T )] .

Therefore, we have

P (G,S, k; z) =

|E|∑
n=0

αG,S,k,nz
n,

with

αG,S,k,n =
∑

(H,T )∈R2n

|E(H)|=n

βH,T,k,nIndC [(G,S), (H,T )]

and

βH,T,k,n = m−|V (H)\T |
∑

φ:V (H)→[m]
φ(t)=k,∀t∈T

∏
{u,v}∈E(H)

(
a
{u,v}
φ(u)φ(v) − 1

)
.
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It is clear that P (G,S, k; z) is a multiplicative restricted graph polynomial with P (G,S, k; 0) = 1. Furthermore, for any
restricted graph (H,T ) ∈ R2n, the coefficients βH,T,k,n can be computed in time O

(
m|V (H)\S|). Hence, P (G,S, k; z)

is an edge-coloured bounded induced restricted graph counting polynomial with constants µ = 2 and ν = m. This
completes the proof. �

Appendix C: Proof of Lemma 4

We shall now prove Lemma 4. The lemma is due to Barvinok [8–10], however, our proof closely follows that of
Patel and Regts [11].

Lemma 4 (restatement). Fix 0 < ε < 1. Let {ri}ni=1 be the roots of the polynomial p(z) :=
∑n
k=0 akz

k. Suppose that,
for some δ > 0, the roots of p lie in the exterior of the closed disc D(δ). Suppose further that we can compute a0 and

the inverse power sums
{∑n

i=1 r
−j
i

}m
j=1

in time τ(m). Then, for any t in the interior of the closed disc D(δ), we can

compute a multiplicative ε-approximation to p(t) in time O
[
τ
(

log(n/ε)
1−|t|/δ

)]
.

Proof. Define the function f(z) on the closed disc D(δ) by

f(z) := log(p(z)),

where the branch of the logarithm is chosen by taking the principal value at p(0). By Taylor’s Theorem about the
point t = 0, for each t in the interior of the closed disc D(δ),

f(t) =

∞∑
j=0

tj

j!
f (j)(0).

Define the Taylor expansion truncated at order m by

Tm(f)(t) := f(0) +

m∑
j=1

tj

j!
f (j)(0).

Now, let us write p(z) in terms of its roots. By the Factor Theorem,

p(z) = an

n∏
i=1

(z − ri).

Then,

f(z) = log(an) +

n∑
i=1

log(z − ri).

Therefore,

f (j)(0) = −(j − 1)!

n∑
i=1

r−ji .

Let sj be the jth inverse power sum given by

sj :=

n∑
i=1

r−ji .

Then, by noting that f(0) = log(a0),

Tm(f)(t) = log(a0)−
m∑
j=1

sjt
j

j
.
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We shall now show that, for any 0 < ε < 1, the Taylor expansion truncated at order m = O(log(n/ε)) gives an additive
ε-approximation to f(t).

|f(t)− Tm(f)(t)| ≤

∣∣∣∣∣∣
∞∑

j=m+1

sjt
j

j

∣∣∣∣∣∣
≤ 1

m+ 1

∞∑
j=m+1

∣∣sjtj∣∣ .
Since the roots {ri}ni=1 lie in the exterior of the closed disc D(δ), we have |sj | < n/δj . Therefore,

|f(t)− Tm(f)(t)| ≤ n

m+ 1

∞∑
j=m+1

(
|t|
δ

)j
.

Since |t| < δ, by the geometric series formula,

|f(t)− Tm(f)(t)| ≤ n(|t| /δ)m+1

(m+ 1)(1− |t| /δ)
.

Taking m = (1− |t| /δ)−1 log(n/ε), it follows that

|f(t)− Tm(f)(t)| ≤ ε.

We shall now show that the truncated Taylor expansion is a multiplicative ε-approximation to p(t). For the norm, we
have ∣∣∣eTm(f)(t)−f(t)

∣∣∣ ≤ e|Tm(f)(t)−f(t)|

≤ eε,

and ∣∣∣ef(t)−Tm(f)(t)
∣∣∣ ≤ eε.

Now, for the argument, ∣∣∣Arg
(
eTm(f)(t)−f(t)

)∣∣∣ =
∣∣∣Im [log

(
ef(t)−Tm(f)(t)

)]∣∣∣
≤
∣∣∣log

(
ef(t)−Tm(f)(t)

)∣∣∣
≤ ε.

This completes the proof. �

Appendix D: Proof of Proposition 5

We shall now prove Proposition 5.

Proposition 5 (restatement). There is an approximation-preserving polynomial-time reduction from the Ising model
partition function to the restricted multivariate graph homomorphism partition function.

Proof. Let G = (V,E) be a graph with the 2× 2 symmetric matrices A = {(aeij)2×2}e∈E assigned to its edges. Let us
construct a new graph G′ from G by the following vertex gadget. For every vertex v ∈ V , add a new vertex sv and an
edge ev = {v, sv} with a 2×2 symmetric matrix (bevij )2×2 assigned to it. Let S = {sv}v∈V , and let B = {(bevij )2×2}v∈V .
Then,

HomM(G′, S, 2;A ∪ B) =
∑

φ:V (G′)→[2]
φ(s)=2,∀s∈S

∏
{u,v}∈E(G)

a
{u,v}
φ(u)φ(v)

∏
v∈V (G)

bevφ(v)φ(sv)

=
∑

φ:V (G)→[2]

∏
{u,v}∈E(G)

a
{u,v}
φ(u)φ(v)

∏
v∈V (G)

bevφ(v)(2).
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Taking aeij = exp [ωe(2i− 3)(2j − 3)] and bevij = exp [υv(2i− 3)(2j − 3)],

HomM(G′, S, 2;A ∪ B) =
∑

φ:V (G)→{−1,+1}

exp

 ∑
{u,v}∈E(G)

ω{u,v}φ(u)φ(v) +
∑

v∈V (G)

υvφ(v)


=

∑
σ∈{−1,+1}V

exp

 ∑
{u,v}∈E(G)

ω{u,v}σuσv +
∑

v∈V (G)

υvσv


= ZIsing(G; Ω,Υ),

where Ω = {ωe}e∈E and Υ = {υv}v∈V . Hence, we have an approximation-preserving polynomial-time reduction from
the Ising model partition function to the restricted multivariate graph homomorphism partition function. This
completes the proof. �

Appendix E: Proof of Proposition 8

We shall now prove Proposition 8.

Proposition 8 (restatement). Let G = (V,E) be a graph with the weights Ω = {ωe ∈ [−π, π]}e∈E assigned to its edges
and the weights Υ = {υv ∈ [−π, π]}v∈V assigned to its vertices, then,

ψG =
1

2|V |
ZIsing(G; iΩ, iΥ).

Proof. By definition,

ψG =
〈

0|V |
∣∣∣ exp

i ∑
{u,v}∈E

ω{u,v}XuXv + i
∑
v∈V

υvXv

∣∣∣0|V |〉

=
〈

+|V |
∣∣∣ exp

i ∑
{u,v}∈E

ω{u,v}ZuZv + i
∑
v∈V

υvZv

∣∣∣+|V |〉

=
1

2|V |

∑
x,y∈{0,1}V

〈y| exp

i ∑
{u,v}∈E

ω{u,v}ZuZv + i
∑
v∈V

υvZv

 |x〉
=

1

2|V |

∑
x∈{0,1}V

exp

i ∑
{u,v}∈E

ω{u,v}(−1)xu⊕xv + i
∑
v∈V

υv(−1)xv


=

1

2|V |

∑
z∈{−1,+1}V

exp

i ∑
{u,v}∈E

ω{u,v}zuzv + i
∑
v∈V

υvzv


=

1

2|V |
ZIsing(G; iΩ, iΥ).

This completes the proof. �
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