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When can a quantum system of finite dimension be used to simulate another quantum system of finite
dimension? What restricts the capacity of one system to simulate another? In this paper we complete the
program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary
control. By entanglingwe mean that every qudit is coupled to every other qudit, at least indirectly. We
demonstrate that the only class of finite-dimensional entangling Hamiltonians that are not universal for simu-
lation is the class of entangling Hamiltonians gabits whose Pauli operator expansion contains only terms
coupling anodd number of systems, as identified by Bremeéral. [Phys. Rev. A69, 012313(2004]. We
show that in all other cases entangling many-qudit Hamiltonians are universal for simulation.
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[. INTRODUCTION this paper on the simulation efvolutionsof systems. Hamil-
tonian simulation protocols using single-qudit unitary opera-
tions as an additional resource have received considerable
One remarkable aspect of Nature is that it can be modelegttention in recent years due to their relationship with various
by equations whose solution may be obtained by algorithmignodels of quantum computation. One of the more notewor-
means. This empirically observed fact allows us to constructhy advances was the discovery that all two-body Hamilto-
physical theories that make predictions as to how Nature wilhians can simulate all other Hamiltonians on the set of qudits
behave. Of course, while we can simulate Nature, our capadhat they entangle, when combined with single-qudit unitary
ity to do so is limited by the way we choose to perform theoperationg3-12]. This body of work also demonstrated that
simulation and the complexity of the system to be simulatedthese Hamiltonians could be usedefficientlysimulate any
Feynman’s landmark paper on quantum computdtigralis- of[her two-body Hamllto_nla_n that acts on the ne_twork of qu-
cussed the apparent inability of classical computers to effidits they entangle. This includes a Hamiltonian that can
ciently simulate quantum systems and suggested that a quaifiPlement the CNOT operation, thus implying that all entan-
tum computer might succeed where classical computers faiflling two-body Hamiltonians combined with single-qubit
In this paper we study a class of simulation protocols moti-Unitary operations are universal for quantum computation.

vated by the example of quantum computation. In particular The results and tools used to study two-body Hamiltonian

we examine the following question: given a composite Sys_Slmulatlon have been applied fruitfully to several related

. e . o ., problems. There is now a considerable literature on time-
:)eerpfc\)l;/:;haarlt:ilt?g?y?é)rgglnj:]ci)tr;?yl/ Hogggggrgasn v?ggttcr)]t?\:rbll—l;g’rrficl)- optimal strategies for simulating two-qubit Hamiltonians and

fonians can we simulate? guantum gates; see, for examplb,13-27, and references

X i therein. This body of investigation has led to interest in ap-
The simulation of quantum systems by quantum comput:

. ; k ; lying these theoretical results to practical proposals for

ers is a topic that has attracted considerable attention. A con- ;
. X . uantum computatiof28].

siderable literaturésee[2] and references thergiaddresses

. X , ) More recently, studies have focused on using systems
the question of how to adequately simulate physically interyyii, many-qubit interactions for Hamiltonian simulation and

_esting closed quantum systems. Issues of_ partiqular_ intereﬁhte-synthesiEQl,ﬂ,29—3]. A number of these papers have
include the complexity of protocols for simulating initial investigated the structure of systems with many-body inter-

states, simulating evolutions, and for extracting physically,c(ions for the purposes of gate synthesis and algorithm de-
important information from the final state of the computer. ;

i . sign[21,27,30,3] Several authors have recently examined
Each of these issues must be addressed in any comparat%% effects of many-body interactions in quantum [&#]

study of quantum and classical computers, and their capacity,,q optical latticd 33,34 systems.
to simulate Nature. _ For the purposes of this paper we are most concerned with
While state preparation and measurement are vital eleg e \ork in[29], where the authors established which Hamil-
ments of any simulation of a quantum system, we focus ifgnians with many-qubit interactions are universal when
combined with the ability to perform arbitrary single-qubit
unitary operations. In a similar vein we examine which

A. Overview

*Electronic address: bremner@physics.ug.edu.au Hamiltonians with manygudit interactions are universal
"Electronic address: dabacon@cs.caltech.edu when combined with arbitrary singlgudit unitary opera-
*Electronic address: nielsen@physics.ug.edu.au tions. Our final result is a striking generalization of the con-
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clusion in [29]. [29] showed that the only class of non- no
universal entangling Hamiltonians on qubits are thed H,= ®HY, 2)
entangling Hamiltonians, i.e., those Hamiltonians whose =1

Pauli operator expansion contains only terms coupling an

odd number of qubits. Furthermof@9] showed that the odd whereH! acts on qudif, and is either the identity operator,
entangling Hamiltonians can all simulate one another s@r one of a set of traceless Hermitian matrices known as the

there is a sense in which there are only two types of manyGeII—Mann matricesThe Gell-Mann matrices generalize the

qubit entangling Hamiltonian. Remarkably, in this paper wePauli matric;es, and thgs this expansion is a generalizati'on of
will see that when the systems involved are not all qubitsthe expansion for qubits used [i9]. The Gell-Mann matri-
this structure actuallgimplifies with all entangling Hamil- ~ ¢es for ad-dimensional quantum system consist(af d—1

tonians capable of simulating all other entangling Hamilto-Matrices of the form

nians, i.e., we show that apart from the mayupit case, 1
there is only one type of many-body entangling Hamiltonian. _ 1 o
Our primary concern in this paper is with questions of m- ym(m- 1) g‘l [Xb] = (m = 1)jmxm| |, (3)

universality in many-qudit systems, without regard to the
issue of complexity. Thus, when we say a set of resources iwhere 2<m=d, and(b) the Pauli-like matrices:
universalon a set of qudits, we are stating that these re-
sources can be used to simulate any Hamiltonian on those 1
qudits, without implication that this simulation is efficient or Xap= T§(|a><b| + [b)a)), (4)
inefficient. This is in contrast to the notion ohiversality for
guantum computatiomhich requires that any universal set
of resources can simulate a standard gate set with a polyno-
mial overhead in the number of qubits used. That said, it is
often possible to exploit the structure of certain classes of
many-body Hamiltonians to develop efficient simulation al-where 1<=a<b=d. These act as the PautiandY on the
gorithms. For instance much headway can be made in devetwo-dimensional subspace spanned by the ved@mrsand
oping efficient Hamiltonian simulation protocols that use|b). We sometimes refer to thé/,, matrices aCartan sub-
k-local Hamiltonians by adapting the methods developed foalgebraelements of the Gell-Mann matrices, since they span
systems of qubits ih29] to systems of qudits. a Cartan subalgebra of the Lie algebtéd) generated by the
Gell-Mann matrices. However, it is worth emphasizing that
we do not use any special properties of Cartan subalgebras,
and the reader does not need to be familiar with the proper-
Before turning to the discussion and proof of the mainties of Cartan subalgebras to follow the details of the paper;
results of this paper it is helpful to introduce some terminol-Our use of the term is a convenience of nomenclature only.
ogy. Generally, we will use the termudit to describeany ~ Note that the Gell-Mann matrices are traceless and Hermit-
guantum system with a finite-dimensional state space. As al@n, and form a complete basis for traceless Hermitian ma-
example of our usage, a three-qudit system might contain §IC€S- . _ o _
two-dimensional systena qubi, a five-dimensional sys- ~ The representation E€l) is useful as it highlights which
tem, and a four-dimensional system. qudits interact and which do not. In particular, given a term
We are interested in the properties of the HamiltonianH« 1€t S, be the set of qudits upon whicH, acts non-
dynamics of am-qudit system. As we will see, a great deal trivially, that is, the set of QUditS for WhiChlg) is traceless.
can be said about the properties of a Hamiltonian simply by/Ve say that the qudits i, arecoupledby H, and refer to
examining its structure in a suitable representatio.28l,  H. as acoupling term We also say thaitl,, is entanglingon
the authors found that the universality properties of a manythe setS,. More generally, we say that a Hamiltoni&his
body Hamiltonian acting on qubits could be identified by entanglingon some set of qudits if it is not possible to par-
expanding it in the Pauli-operator basis, i.e., tensor productition this set of qudits into two nontrivial seandS such
of X, Y, Z andl. In this paper we expand upon this analysisthat every termH,, in the expansion off couples either a
by examining the properties of anqudit Hamiltonian writ- ~ Subset ofSor of S. In graph-theoretic language, if the qudits
ten in ad-dimensional generalization of the Pauli basis. ~ corresponded to vertices on a hypergraph and the couplings

An arbitrary Hamiltonian om qudits can be uniquely corresponded to hyperedges, the condition that the Hamil-
written as tonian is entangling on a set of qudits is simply that the

hypergraph connects this set. As such we say that a Hamil-
tonian connectghe set of qudits it entangles.
H=2> hH,, (1) Our strategy for demonstrating universality in this paper
@ is to show that some set of resources is capable of simulating
another set already known to be universal. In particular, we
whereh,, are real coefficients and eatl), in the expansion make reference to two theorems that categorize large classes
is a tensor product of Hermitian operators acting on the inof Hamiltonians as universal up to single-qudit unitary op-
dividual qudits, erations. The first was mentioned in the Introduction: two-

Yan= = (|a)(b| - |b)(a), (5)
\2

B. Terminology and statement of results
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body entangling Hamiltonians are universal for quantumthat is present in the Gell-Mann expansionHfthusisolat-
computatiorf 10]. Using the terminology just introduced, this ing the term. In Sec. IV we show that given some term cou-
theorem may be stated as folloW0]. pling k qudits, we can simulate new coupling terms that
Theorem 1SupposeH is a two-body Hamiltonian, that is, couple fewer thark qudits. We also discuss the limitations
every coupling term in the Gell-Mann expansion Bf  on this type of simulation. Section V examines how we can
couples at most two qudits. H is entangling on a set af  use a term that coupldsqudits to simulate a coupling be-
qudits(that is, the coupling terms iH connect these qudits tween two qudits. Finally we prove the main result of the
then evolutions oH together with single-qudit unitary op- paper: that the only nonuniversal class of entangling Hamil-
erations are universal for quantum computation on these tonians is the class of odd Hamiltonians. This is argued
qudits. through an exhaustive demonstration thatrafjudit entan-
The second universality theorem that we use involvegling Hamiltonians other than the odd many-qubit Hamilto-
Hamiltonians acting on sets of qubits that have couplingnians are indeed universal.
terms that may couple more than two qubits. This theorem is
stated[29] as follows.
Theorem 2 SupposeH is an arbitary entangling Hamil- Il. SIMPLE SIMULATIONS
tonian on a set ofi qubits. Evolutions oH and single-qubit
unitary operations are universal on thasqubits if and only
if the Gell-Mann(i.e., Paul) expansion oH contains at least

In this section, we review some simple Hamiltonian simu-
lation techniques studied in previous paplés12), and that
one coupling term that couples an even number of qubits Wi|| form the basis for our later results. By a Hamiltonian

. simulation we mean a sequence of evolutions due to our

o e ytem Hamilniaré, whch s assumed e, neraved
an even number of qubits. il does not contain such a with single-qudit unitary operations. The goal is to approxi-

coupling term then we shall call it asdd Hamiltonian, since mate (to arbitrary accuragyevolution according to some

all its terms couple an odd number of qubits. What can th other Hamiltonian. If that is possible for some desired

odd Hamiltonians simulate? This question was also answer amiltonian we say that Hamiltonian can binulated The
in [29] ’ q q eory of Lie algebras and Lie groups ensures that the tech-

. I niques decribed in this section exhaust the set of possible
: Theorem 3L_et H be an odd entanglmg Hamiltonian, that simulations that can be performed given some Hamiltonian
is, every term in the Gell-Mann expansion ldfcouples an

odd number of qubits. Theld and single-qubit unitaries can and single-qudit unitaries,
simulate any other odd Hamiltonian on thegubits.

Reference[29] also demonstrated that the Lie algebra A. Conjugation by a unitary operator
generated by the odd entangling Hamiltoniansrogubits
(and local unitariescorresponds to the Lie algebras(2") , _ N )
andsp(2"), for even or odch respectively. Furthermorg29] via the unitary operatioe” ™. Say we are also given the

showed that the odd Hamiltonians can be made univers%?”'ty to perform some unitary operatiob, and its inverse,
) : : . Then performing the sequence of unitary operations
with appropriate encodings.

: . o -iHty jt = o-iUHU Tt . .
In this paper we demonstrate that if a Hamiltonian is enYe " U =€ , we see that we can simulate an evolution

tangling on a set of qudits, then this Hamiltonian is universaPccording to the conjugated HamiltonigtHU™. In this pa-
on those qubits, when assisted by local unitary operationd€': @ we have given ourselves the ability to perform arbi-
The only exception to this result is the special case when thE&7y Single-qudit unitaries, we will often conjugate a Hamil-

Hamiltonian is an odd Hamiltonian acting on qubits only. ~tonian by unitaries of the for)=U, @ U, & --- ® U,

A quantum system with HamiltoniaHl evolves in time

C. Outline B. Simulating linear combinations

Theorem 1 shows that if a Hamiltonian connects a set of Suppose we can simulate two different Hamiltoniars,
qudits with two-qudit couplings then this Hamiltonian is uni- @d Hz. Then we can simulate the sum of these Hamilto-
versal with single-qudit unitaries. Our strategy in this papemians, sinces "1t 2t~ g7(H*H2A for small A, and with
is to show that a many-body Hamiltonidthat is not one of ~Successive ev.olu'uor.ls we can simulate the Hamiltoriign
the odd qubit-only Hamiltonianonnecting a set af qudits ~ *Hz for an arbitrary time.. Imagine that we could evolve our
can simulate a two-body Hamiltonian connecting the sam@&ystém by a whole set of Hamiltoniang{, and their
set of qudits. This is done by defining a series of simulatioregatives. It follows that we can simulate arbitrary linear
protocols, each identifying broad classes of Hamiltonian€ombinations of any of the elements &t
that any entangling Hamiltonian can simulate, until we arrive

at the eventual result. _ IGiven that we can simulatd, it turns out always to be possible

The structure of the paper is as follows. In Sec. Il weg simulate H, using single-qudit unitary operations. This follows
introduce some simple general simulation techniques that afgom Eq.(11), later in the paper, which shows how to exprebsas
used often in this paper. Section Il introduces a simulationa sum of terms of the forryHU", whereU are local unitary op-
technique known agerm isolation This simulation tech- erations. By the methods of simulation we've already introduced, it
nigue allows us to simulate any particular coupling tekHp,  follows that -H can be simulated.
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C. Simulating commutators of Hamiltonians {H,} and still encapsulate all of the Hamiltonian simulation

Another simple simulation protocol that can be performedProperties oH. Given that the elements of the get,} have
is the simulation of a commutator of two different Hamilto- & much simpler structure than a genéfiaterm isolation is a
nians. This is possible as e MidgH2AgHAgiHA powerful tool for analysis.
~ e iiHLHDA? S0 if we can simulatei,, H, and their nega- We now show that term isolation can always be per-

tions we can simulate the commutator of these Hamiltoniansf.ormed‘ .If we dempnstrate that we can ugeand s_lnglg-
qudit unitaries to simulate sontg, coupling an arbitrarily
chosen set of qudits, then we know from Sec. Il D that it can
be used to simulate any other term coupling the same qudits.

Consider the general expression for a Hamiltonian acting Without loss of generality we may assume that the term
on a system of qudits in Eq&l) and(2), and recall thaH,  being isolated is of the form
couples a set of quditS,. We now introduce a theorem from k
[8] to show it is possible to ugd, and single-qudit unitaries H,= & V\/bi_> ® 1ok (7)
to exactly simulate any other coupling term that couples the j=1 !
set of quditsS,;

Theorem 4Let A andB be any two traceless Hermitian
operators ind dimensions and assume th&# 0. There is an
algorithm to find a set of at most® unitary operatorsy,,
and constants,>0 such that

D. Simulating Hamiltonians that couple the same qudits

wherek is the number of qudits in the s&,. To see that
there is no loss of generality in assuming this form, note that
we can always relabel the qudits 8 so that they are the
first k qudits in the system, and any operatdtg or Y, in
H, are equivalent under local unitaries\te,.

- t Any term in the expansion dfl, Hg, that is not the term
A % CnUnBUn. © H,, that we wish to keep, is diﬁerentﬁfroﬂﬁa in at least one
of three ways.

Key to proving this theorem is a result from the theory of - case 1 H , has terms acting nontrivially on qudits outside
operator majorization, Uhlmann’s theorefi5]. Although ¢ S,, the set of qudits upon whicH,, acts.

we do not need the theory of majorization in this paper, for cage 2 H, acts on a strict subset &,
the benefit of readers familiar with majorization, we make cage 3 H, acts on the same qudits B, but is a tensor

the following summary remarks. Recall that Uhimann’s theo-product of different elements of the Gell-Mann basis. That is,
rem tells us that iP < Q (that is, P is majorized byQ) then H.#Hg, even thougtH, couples the ses,

P=3,p,UQUY, for some unitary operatoid, and somep, Each of these cases identifies a special difference between
Fhat form a probability distribution. The proof of _theorem 4 H, and H,. In the following sections these differences are
in [8] follows by showing thaA < cB for some positive con-  exploited to define simulations that remove undesirable
stantc. terms.

Any coupling termH,, in H is a tensor product of traceless  As we have previously stated, every simulation in this
terms acting orS,. If we replaceB in Theorem 4 by the  section may be represented as a sequence of linear combina-
individual tensor factors appearing H,, then we see that tjons, commutators and conjugations by local unitaries. We
we can simulate any that is a tensor product of traceless gften denote a sequence of operations of this type on a
Hermitian operators acting on the same Sgt This result  Hamiltonian, H, by a scripted letter. For example, in Sec.
will be extremely useful in the remainder of this paper. It ||| A we define the depolarizing channel, which is a linear
tells us that if we can simulate some couplifg, we can  compination of conjugations by local unitaries, and write
simulate every other coupling on the same set of qudits. D[H]=H; to symbolize the depolarizing channel acting on

H, resulting in the simulated Hamiltoniaty. The action of
Ill. TERM ISOLATION D on H defines a simulation. We can also compose simula-
tion techniques, so, for example, in Sec. Il B we define a

In Sec. Il D, we saw that any coupling terid,,, in the simulation7Hp]=Hr.

expansionH=X _h,H, [Eqg. (1)], could be used to simulate
any other coupling term that entangles the same set of qudits.

If_we have a Ham_iltonian that i_s simp_ly a coupling term on a A Case 1
given set of qudits, we can immediately say a great deal ) ) ) ]
about what can be simulated with that Hamiltonian. In gen- Ve begin by noting the identity
eral we do not have this luxury of interpretation. Instead, > Up\]UE:dtr(\])L (8)
some general HamiltoniarH=X_,H,, has many different u

coupling terms that couple many different sets of qudits. h . . dit of di sib
Term isolationis a simulation technique that usék and whereJ Is an operator acting on some qudit of dimensibn

single-qudit unitaries to simulate any particular tekp in and .the sum is over ati® 'elements of thed-d[mensmnal

the expansion oH alone. Pauli groupz, where we omit repeated summation when two
Term isolation allows us to think abotit in a different

way, showing that the ability to simulate is equivalentto ’The properties of the-dimensional Pauli group were extensively

the ability to simulate the coupling terrdsl,} individually.  studied in[36]. We will not use any further special properties of this

Thus, we can perform our analysis entirely in terms of the segroup and refer the interested readef36] for further information.

p
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elements in the Pauli group differ merely by a phase factor. TU[H] = ((dD)2 - 1)H
We note there is a simple extension of E&). for multiple-

qudit systems, + 2 (UPeUNHUP e ud)t
U P
2 UPe - euMIUP e - @ UM)T=Dtr(I)1°", (13)
)
p

Performing 7" for j=2,... k, only terms that couple the
9 same qudits a$l, are not eliminated. So performing the

o ) ] following sequence of simulations,
where the superscripts indicate the different qudit systems, of

respective dimensiod?, D=d®, ... ,d™ is the dimension THpl=TW[T I [TPHp] - NI =Hy (19
of the combined systenh,represents the appropriate identity
operator for each subsystem, and the sum is over conju
tions by all elements of the Pauli group for each qudit, agai
omitting repeated sums over elements that are the same up to
a phase factor. C. Case 3
We define the simulatio[H]=Hp to be the multiple-
qudit depolarizing channel acting on the k qudits that are
not coupled byH,,

he simulated Hamiltoniank, is a linear combination of
erms that couple the same quditskhs

We have shown how to simulate a Hamiltoniblp that
only contains terms which couple the same quditslasTo
eliminate the remaining terms we define the following opera-
tors that are both unitary and Hermitian:

DIH]=2 (UK ® -+ @ UMHUK Y  --- @ UI)T
uy)

d
Z,=1-2a)al= X [jXj| - 2la)al. (15
=Hp. (10 =1

Notice that theZ, operators commute with each of the Cartan
subalgebra elementdy,,, in Eq. (3). Hence, each of th&,
will also commute withH,, as it is a tensor product of ele-
ments of the Cartan subalgebra. Further notice Zyadnti-

H, acts on the firsk qudits of ann-qudit system, that is, the
setS,. If we examine the simulated HamiltoniaHlp, we
find from Equation(9) that any termsH; in H that act non-

trivially on qudits outside the se§, are eliminated. The commutes withX,, andY,,, if a=| or a=m and commutes

simulation leaves the coupling terr), unchanged except for . . . . :
an unimportant positive scaling factor. Thus we have re—g}iﬁimfees' :’:fmza\?vi,:]&e tg'nsdf?d ;Oedrg?(?ri arzlsrgléltaitllr?n that
moved all the case 1 termd, from the Hamiltonian, and Im Im OP P T

. i We define a simulation
need only consider the remaining case 2 and case 3 terms.

ZIH]=H+Z0HZD, (16)

B. Case 2 where the superscrigtindicates aZ, operator acting on the

The HamiltoniarHp, is a linear combination of terms that 1th qudit, with identities acting elsewhere. If there exists any
couple the set of quditS, or some subset d,. It turns out ~ t€rm with anX;, or Y\, operator on thgth qudit, and such
that we can use another extension of E®). to simulate a thata=l ora=m, then this term will be eliminated froril;
Hamiltonian, Hy, that only has terms that couple the St~ by the simulationz![H]. Expanding on this idea we can
In Eq. (8), if Jis a traceless operator we find that the right-€eliminate every term on thgh qudit that has the forrx,,, or
hand side of the equation is zero. Noting tha an element Y, by performing the following simulation:

of the Pauli group, we find ) L )
group Z0[H{] = ZQ)[ZEQ_D['“[Z&”[HT]] 1, (17)

> Udul=-J, (11)  whered is the dimension of thgth qudit. The effect of this
Upz simulation onH,, is simply to rescale it. Now, if we perform

. o _ the simulationz" for each qudit inS,,
which always holds for traceless Using single-qudit uni-

taries from the Pauli group we consider the following sum- Z[H]= 29[ 2%V [Z0[H]] - T =H,  (18)

mation: all that remains in the newly simulated Hamiltoni&ty, is a

linear combination of terms that commute with the Cartan

(1) 2y(3@) 2y @D (2t . - .
" 2(2) (Up" @ Up)(IH @ I7)(Ug" @ U subalgebra elements. We have now simulated a Hamiltonian
Up #1LUp #l with no X- and Y-type terms.
(12) H, is a linear combination of terms that are tensor prod-

ucts of operators from the Cartan subalgebra. Consider the
If JU and J? are traceless, this expression is equal tounitary representationP(m), of the permutation group
IV eJ? If J? is traceless and is the identity, this ex- S, _; that permutes the elements of the diagonal basis of the
pression is equal to[¢d¥)2- 1]l ® J@. With this in mind we  Cartan subalgebraa), for a=1, ... b;—1 on thejth qudit.
define a simulation: Whena=b; we haveP(m)W,PV(7)=W,. Whena<b,

052312-5



BREMNER, BACON, AND NIELSEN PHYSICAL REVIEW A71, 052312(2005

we find that the effect of conjugating/, by a permutation qubits that it coupled. More specifically, it was shown that if
operation is to shift around the diagonal elements\Waf H, coupledk qubits andk was an odd number, theth, could
Now, we can eliminate any terms K, that contain an op- not be used with single-qubit unitaries to simulate a coupling

eratorvvg) with a<b; by performing the simulation term that coupled—1 qubits. One way of seeing why this is
. ) _ true is to examine the commutator of two Hamiltonians,

PUH = > PUHPOT, (19  [H,.Hgl, that couple the same set of qub8s It is easy to

T€S%-1 show that the commutat¢H,,Hz]# 0 if and only if there

This works becaus®/ is a diagonal, traceless operator and@'€ an odd number of locations & whereH,, andH differ.
the permutation;P), “distributes each of the diagonal ele- From this restriction it is possible to prove, as was done in

ments of equally. The effect o) on termsw) acting [29], that coupling terms coupling an odd number of qubits
on thejth qaudit and witha=bj is to simply scale ?hem by a can only ever simulate other Hamiltonians that have odd

factor of (b;—1)!. Performing the following simulation, coupling‘_s. ) .
(b=1) g g What is different when not all the systems are qubits? The

P[H,] = PO[PEI[---[PY[H,]]--- ] =Hp, (20)  purpose of this subsection is to investigate the commutator of

o , , o two specially chosen couplingd, and Hg that couple the
we produce a HamiltoniaHp that is a linear combination of ¢5me set of quditsS,. In the case of qubits, it is not difficult

terms that couple the same quditstgsand are tensor prod- 4 convince oneself that whed, contains arevennumber of
ucts of operator$V, with a=b;. _ , qubits, the commutatofH,,H,] is either zero, or else
In Sec. Il C we pointed out that it is possible to simulate ac hjes 4 set of qubits that isstrict subset of the original set
Hamiltonian proportional to the commutator of two Hamil- 5 “\we will show by an explicit calculation that when one or
tonians that are both simulatable. Now, we note that the comz, ;e of the systems is not a qubit, it is possible to chdse
mutator W, Xo-1p,]=0 if a>bj. If a=b; we find  angH, so that the commutatdH,,,H,z] contains terms cou-
_i[W(j.),Xb.—lb.]:(\f'gj/\f—bj—1)Yb.—1b.- We can make use of plin'g the entire seB,. Remarka}bly, we will see in the re-
this distinjctioln to find a wa tjo rémove the unwanted term mainder of the paper that this is the key fact that simplifies
. vay 1o Sthe study of universality when not all the systems are qubits.
from Hp. We define the simulation : , Kk i) K oli)
We begin by choosingd,=®;_,X;, and Hg=®;_;X

ab’

X[H] =~ i[H,Xf)jj)_lbj : (21)  where for allj we setb#b’. (We assume initially that all

. ) ) ) systems are of dimension 3 or gregt&iven these forms for
Then if we perform the following sequence of simulations, H,, andH, what doegH,,,H,] look like? We find

AHp] = XAV [AD[Hp]] - T =Hx,  (22) . K

k
we find thatHX:(®}<:1ij_lvbj)®I®”"‘, up to some unimpor-  [H,,Hgl= ® 7(ng, + iYgg,) - ® #(ng, - iYgg,).
tant but nonzero constant multiple. We have now simulated a i=12V2 i=12v2

single coupling term that couples the same quditsHgs (23
Recall in Sec. Il D we noted that a coupling term can be used

with single-qudit unitaries to simulate any other term cou-This expression contains Hermitian and skew-Hermitian
pling the same set of qudits. So, we can tseand single- terms. Upon expansion of the above expression we find that
qudit unitaries to simulatéd,, the desired term. Thus we all of the Hermitian terms sum to zero, leaving only a sum of

have demonstrated that it is possible to isokdefrom H. skew-Hermitian terms remaining. These terms correspond to
a sum of tensor product terms containing odd numbers of

Y terms. All of the terms couple the entire &t It is easy

to verify that this sum is always nonzero, simply by inspec-
Term isolation shows that the ability to simulate a Hamil- tion of the coefficients of the relevant terms.

tonianH=X _h_ H,, is equivalent to the ability to simulate the ~ So far we have only considered the case where we could

set of coupling HamiltoniangH,}, given single-qudit uni- choose to simulatél, and H for X(a'g and xg; b#b’'. We

tary operations. Additionally, we learned in Sec. 11 D thatcgn only do this when each subsystem has dimersie@.
givenH, and single-qudit unitaries we can simulate any cou-f we have subsystems whek=2, the situation changes
pling term that couples the same quditstds So far we  sjightly, but the results are similar, provided not all of the
have not presented any way of simulating some couplingybsystems are qubits.

term that couples a diffe_rent set of qud_its than any of the For everyj where the qudit has dimensiodi>2 we
terms in the sefH,}. In this section we will take a key step chooseH(')=X('l)) and H2)=X(” with b#b’. For every

towards a proof of universality, showing how to use single- “ . . av’ M-
qudit unitaries and a terrhl,, couplingk qudits in order to where the qudit has dimensiaf¥2, we choosét,, =X, and

simulate a term that couplds-1 qudits. H_g):Y. Provif:ied H, andH; do not couple _qubits_e>_<clu—
sively, a straightforward calculation along lines similar to
that already done shows th@t,,Hz] is a nonzero sum of
terms, each of which is skew-Hermitian and coupleskall

In [29] it was shown that iH , coupled qubits, its capacity qudits. The only subtlety in the calculation is the need to
to simulate other coupling terms depended on the number ainalyze separately the cases where there asyamumber

IV. SIMULATING NEW COUPLING TERMS

A. Evaluation of commutators
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of qubits in the setS,, which gives rise to a commutator the case wherél is a sum of odd coupling terms, as dis-

which is a nonzero sum of tensor product terms containingussed inM29], and summarized in theorems 2 and 3 in the
an odd number oYy, terms, and the case where there are arpresent paper.

odd number of qubits in the se$,, which gives rise to a We begin by proving theorem 5, which shows that a cou-
commutator which is a nonzero sum of tensor product termgling term,H,, that couples a set &fqudits,S,, can be used

containing an even number of,, terms. to simulate a set of 2-qudit couplings that connect theSset
This implies thatH, and single-qudit unitaries are a univer-
B. Simulating identity operators sal set on the quditS,. We conclude with theorem 6, show-

. . . ing that an arbitrary entangling Hamiltonian anqudits is
Given some termH,, coupling a set of qu.'t§a’ WE  universal for the qudits it entangles.

show how the results on commutators just obtained allow us

to simulate other coupling term that couples a subse$,of

with just one qudit removed, more precisely, as follows.  A. Theorem 5: Using a term coupling many qudits to simulate
Lemma 1 Given the ability to evolve via-laz®;‘:1H2), a term coupling two qudits

which couplesk qudits, and local unitary operations, it is

possible to simulatéi’ such that Theorem SSupposd-la:®}‘:1H2) couplesk qudits. Then

H, and single-qudit unitary operations can be used to simu-
H'=1®H,, (24) late a set of two-qudit couplings connecting every qudit
) _ _ coupled byH,, providedH, does not couple qubits exclu-
providedH, does not couple qubits exclusively. The cou-sjyely, andk>1. ThusH,, and single-qudit unitaries are uni-
pling termH, may couple ank-1 qudit subset of,, sub-  yersal on the set of qudits coupled bly,
ject to the constraint that the subset not be qubits exclusively. pygof. Without loss of generality we may label the sys-
Proof. GivenH,, we can simulate any other coupling term, tams so thaH,, couples systems 1 throughand system 1 is
He=®" HY, that acts nontrivially on the same setlofiu-  not a qubit. Fixj in the range 2 througk. Applying lemma
dits, S,. We label the qudits so the&, consists of qudits 1 repeatedly, we see that we can simulate a Hamiltonian
1,... k and so that our goal is to simulate a coupling oncoupling system 1 and systefn It follows that H, and
qudits 2, ...k, i.e., the goal is to remove qudit 1. To this end, single-qudit unitaries are universal on the set of qudits
we chooseH! so thatH'”=H". Note that, by assumption, coupled byH,,. [
the set 2, ...k does not contain qubits exclusively. Evaluat-

ing the commutator, we find
B. Theorem 6: Which Hamiltonians are universal?

n n
i[Ha,HB]:i(H(al))Z@@ {@ Hii),@ H%)] (25) With Theorem 5 in minq, we now prove that the only
=2 i=2 nonuniversal set of entangling Hamiltonians is the set of odd
Dra B ) Hamiltonians acting on qubits alone.
We note that(H,")* is a positive operator and thus is not  Theorem 6 Single-qudit unitary operations, and evolu-
traceless. Hence, if we apply the depolarizing channel, Egions via a Hamiltoniant, that connects a set ofqudits, is
(8), to the first qudit we can simulate an identity term actinga universal set of operations on thaseudits if and only if
on the first qudit. If we do this and SNE®?=2H2), N'= H is not an odd Hamiltonian acting on qubits alone.
®}‘:2Hf6‘,) we simulate Proof. The forward implication follows from Theorem 2,
L , as does the reverse implication when all systems are qubits.
H =il ® [N,N']. (26) Thus, all that needs proof is the reverse implication in the

Finally, we note that adl and N’ don't act exclusively on case wherH is an entangling Hamiltonian that does not act
qubits, our earlier results on commutators show that we cafxclusively on qubits. We will show how to construct a set of
ensure thaN, N'] is a nonzero linear combination of terms two-body couplings that connect allqudits. _

that coupleS,, less the first qudit. Term isolation allows usto ~ TO construct this set, begin by picking a system that is not

simulate one of the coupling terms [N, N'] alone, i.e., @ qubit, and label it system 1. We will explain how to con-
H”=1®H,, as required. ] struct a setS, of systems to which 1 can be coupled via a

two-body interaction. We begin by settii®r{1}, and aim to
add in other systems that can be coupled to 1 via two-body
interactions. Our strategy is to show that provideds not
Theorem 1 stated that if a set of quditscisnnectecdby a  yet maximal, i.e., does not yet contain albudits, then it is
Hamiltonian,H, with two-body interactions, then evolutions always possible to add an extra qudit irgo
by H and single-qudit unitaries form a universal set of op- To see this, supposg is not yet maximal. Then it is
erations on that set of qudif40]. A set of 2-qudit coupling always possible to pick a qudijt inside S and a quditk
terms connecting the same set of qudits is also universal amutside ofS such thatH contains a coupling terrdl;, which
they can simulate a two-body Hamiltonian on the set of qu-couples systemgandk. (Other systems may also be coupled
dits. We prove in this section the main result of this paperby Hy,.) In the case when eithgror k is not a qubit, theorem
that a generic Hamiltoniart, entangling a set of qudits can 5 shows that a term coupling jusandk may be simulated.
simulate a set of 2-qudit coupling terms connecting the quTheorem 1 implies that we can also simulate a term coupling
dits, and is thus universal. The only exception to this rule issystem 1 andk, and so systerk may be added t&.

V. UNIVERSALITY
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The other possible case is wheandk are both qubits. In  quite remarkable that, with the exception of odd entangling
this case, suppose without loss of generality thgthas the  Hamiltonians, all of the different many-qudit interactions are
form XVeXx®®--- where the superscripts label the sys-equivalent. Even in the case of odd entangling Hamiltonians,
tems. We may also simulate the couplib(é?@Z(D, since  universal simulation can be achieved using an encoding
systemj is in S. Taking the commutator of these two cou- which wastes only a single extra qubit of sp428]. Thus
plings, we see that we may simulate couplings of the fornthere is a real sense in which, for simulation, all interactions
XDeYDexWe--- . Applying Theorem 5, we see that it is have been created equal.
possible to simulate a two-body coupling between system 1 Part of the simplicity of our result stems from our focus

andk, and thus systerk may be added t&. [ on universality for simulation as opposed to universality for
quantum computation, which requires that issueseff-

ciencybe taken into account. When one adds the requirement
VI. CONCLUSION of efficiency of simulation, then problems of universality be-
come much more difficult: indeed this is perhaps one of the
undamental problems in the study of the computational
ﬁomplexity of quantum circuits. A well-developed theory of
efficient simulation is a task of great importance and, judging
tfrom the difficulties encountered in proving lower bounds for
problems in classical circuit complexity, this task is probably
an immensely difficult problem. This paper can be seen,
however, as a necessary precursor to any attempt to advance
tgis program.

We have demonstrated that many-qudit Hamiltonian
combined with local unitary operations are always universal
for simulation on any connected set of subsystems upo
which the interactions act nontriviallprovidedthat Hamil-
tonian is not an odd Hamiltonian acting on qubits. This resul
is rather intriguing and elegant, especially in the light of the
general lack of broad results for many-bo@s opposed to
two-body) problems in quantum information science. In the
study of pure state bipartite entangled states, for example,
single unit of currency, the maximally entangled state, has
been identified and the fungible nature of this currency has
been established. On the other hand, a similar currency and We thank Jennifer Dodd, Henry Haselgrove, and Andrew
set of fungible transformations has not been identified foHines for checking this manuscript and helpful discussions.
systems consisting of more than two parties. Given this dif-This work was supported in part by the National Science
ficulty in understanding the structure of quantum states, it is~oundation under Grant. No. EIA-0086038.
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