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When can a quantum system of finite dimension be used to simulate another quantum system of finite
dimension? What restricts the capacity of one system to simulate another? In this paper we complete the
program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary
control. By entanglingwe mean that every qudit is coupled to every other qudit, at least indirectly. We
demonstrate that the only class of finite-dimensional entangling Hamiltonians that are not universal for simu-
lation is the class of entangling Hamiltonians onqubitswhose Pauli operator expansion contains only terms
coupling anodd number of systems, as identified by Bremneret al. fPhys. Rev. A69, 012313s2004dg. We
show that in all other cases entangling many-qudit Hamiltonians are universal for simulation.
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I. INTRODUCTION

A. Overview

One remarkable aspect of Nature is that it can be modeled
by equations whose solution may be obtained by algorithmic
means. This empirically observed fact allows us to construct
physical theories that make predictions as to how Nature will
behave. Of course, while we can simulate Nature, our capac-
ity to do so is limited by the way we choose to perform the
simulation and the complexity of the system to be simulated.
Feynman’s landmark paper on quantum computationf1g dis-
cussed the apparent inability of classical computers to effi-
ciently simulate quantum systems and suggested that a quan-
tum computer might succeed where classical computers fail.
In this paper we study a class of simulation protocols moti-
vated by the example of quantum computation. In particular,
we examine the following question: given a composite sys-
tem with a finite-dimensional Hamiltonian and the ability to
perform arbitrary local unitary operations, what other Hamil-
tonians can we simulate?

The simulation of quantum systems by quantum comput-
ers is a topic that has attracted considerable attention. A con-
siderable literaturesseef2g and references thereind addresses
the question of how to adequately simulate physically inter-
esting closed quantum systems. Issues of particular interest
include the complexity of protocols for simulating initial
states, simulating evolutions, and for extracting physically
important information from the final state of the computer.
Each of these issues must be addressed in any comparative
study of quantum and classical computers, and their capacity
to simulate Nature.

While state preparation and measurement are vital ele-
ments of any simulation of a quantum system, we focus in

this paper on the simulation ofevolutionsof systems. Hamil-
tonian simulation protocols using single-qudit unitary opera-
tions as an additional resource have received considerable
attention in recent years due to their relationship with various
models of quantum computation. One of the more notewor-
thy advances was the discovery that all two-body Hamilto-
nians can simulate all other Hamiltonians on the set of qudits
that they entangle, when combined with single-qudit unitary
operationsf3–12g. This body of work also demonstrated that
these Hamiltonians could be used toefficientlysimulate any
other two-body Hamiltonian that acts on the network of qu-
dits they entangle. This includes a Hamiltonian that can
implement the CNOT operation, thus implying that all entan-
gling two-body Hamiltonians combined with single-qubit
unitary operations are universal for quantum computation.

The results and tools used to study two-body Hamiltonian
simulation have been applied fruitfully to several related
problems. There is now a considerable literature on time-
optimal strategies for simulating two-qubit Hamiltonians and
quantum gates; see, for example,f5,13–27g, and references
therein. This body of investigation has led to interest in ap-
plying these theoretical results to practical proposals for
quantum computationf28g.

More recently, studies have focused on using systems
with many-qubit interactions for Hamiltonian simulation and
gate-synthesisf21,27,29–31g. A number of these papers have
investigated the structure of systems with many-body inter-
actions for the purposes of gate synthesis and algorithm de-
sign f21,27,30,31g. Several authors have recently examined
the effects of many-body interactions in quantum dotf32g
and optical latticef33,34g systems.

For the purposes of this paper we are most concerned with
the work inf29g, where the authors established which Hamil-
tonians with many-qubit interactions are universal when
combined with the ability to perform arbitrary single-qubit
unitary operations. In a similar vein we examine which
Hamiltonians with many-qudit interactions are universal
when combined with arbitrary single-qudit unitary opera-
tions. Our final result is a striking generalization of the con-
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clusion in f29g. f29g showed that the only class of non-
universal entangling Hamiltonians on qubits are theodd
entangling Hamiltonians, i.e., those Hamiltonians whose
Pauli operator expansion contains only terms coupling an
odd number of qubits. Furthermore,f29g showed that the odd
entangling Hamiltonians can all simulate one another, so
there is a sense in which there are only two types of many-
qubit entangling Hamiltonian. Remarkably, in this paper we
will see that when the systems involved are not all qubits,
this structure actuallysimplifies, with all entangling Hamil-
tonians capable of simulating all other entangling Hamilto-
nians, i.e., we show that apart from the many-qubit case,
there is only one type of many-body entangling Hamiltonian.

Our primary concern in this paper is with questions of
universality in many-qudit systems, without regard to the
issue of complexity. Thus, when we say a set of resources is
universal on a set of qudits, we are stating that these re-
sources can be used to simulate any Hamiltonian on those
qudits, without implication that this simulation is efficient or
inefficient. This is in contrast to the notion ofuniversality for
quantum computationwhich requires that any universal set
of resources can simulate a standard gate set with a polyno-
mial overhead in the number of qubits used. That said, it is
often possible to exploit the structure of certain classes of
many-body Hamiltonians to develop efficient simulation al-
gorithms. For instance much headway can be made in devel-
oping efficient Hamiltonian simulation protocols that use
k-local Hamiltonians by adapting the methods developed for
systems of qubits inf29g to systems of qudits.

B. Terminology and statement of results

Before turning to the discussion and proof of the main
results of this paper it is helpful to introduce some terminol-
ogy. Generally, we will use the termqudit to describeany
quantum system with a finite-dimensional state space. As an
example of our usage, a three-qudit system might contain a
two-dimensional systemsa qubitd, a five-dimensional sys-
tem, and a four-dimensional system.

We are interested in the properties of the Hamiltonian
dynamics of ann-qudit system. As we will see, a great deal
can be said about the properties of a Hamiltonian simply by
examining its structure in a suitable representation. Inf29g,
the authors found that the universality properties of a many-
body Hamiltonian acting on qubits could be identified by
expanding it in the Pauli-operator basis, i.e., tensor products
of X, Y, Z and I. In this paper we expand upon this analysis
by examining the properties of ann-qudit Hamiltonian writ-
ten in ad-dimensional generalization of the Pauli basis.

An arbitrary Hamiltonian onn qudits can be uniquely
written as

H = o
a

haHa, s1d

whereha are real coefficients and eachHa in the expansion
is a tensor product of Hermitian operators acting on the in-
dividual qudits,

Ha = ^
j=1

n

Ha
s jd, s2d

whereHa
s jd acts on quditj , and is either the identity operator,

or one of a set of traceless Hermitian matrices known as the
Gell-Mann matrices. The Gell-Mann matrices generalize the
Pauli matrices, and thus this expansion is a generalization of
the expansion for qubits used inf29g. The Gell-Mann matri-
ces for ad-dimensional quantum system consist ofsad d−1
matrices of the form

Wm =
1

Îmsm− 1d
So

b=1

m−1

ublkbu − sm− 1dumlkmuD , s3d

where 2ømød, andsbd the Pauli-like matrices:

Xab =
1
Î2

sualkbu + ublkaud, s4d

Yab =
− i
Î2

sualkbu − ublkaud, s5d

where 1øa,bød. These act as the PauliX and Y on the
two-dimensional subspace spanned by the vectorsual and
ubl. We sometimes refer to theWm matrices asCartan sub-
algebraelements of the Gell-Mann matrices, since they span
a Cartan subalgebra of the Lie algebrasusdd generated by the
Gell-Mann matrices. However, it is worth emphasizing that
we do not use any special properties of Cartan subalgebras,
and the reader does not need to be familiar with the proper-
ties of Cartan subalgebras to follow the details of the paper;
our use of the term is a convenience of nomenclature only.
Note that the Gell-Mann matrices are traceless and Hermit-
ian, and form a complete basis for traceless Hermitian ma-
trices.

The representation Eq.s1d is useful as it highlights which
qudits interact and which do not. In particular, given a term
Ha let Sa be the set of qudits upon whichHa acts non-
trivially, that is, the set of qudits for whichHa

s jd is traceless.
We say that the qudits inSa arecoupledby Ha and refer to
Ha as acoupling term. We also say thatHa is entanglingon
the setSa. More generally, we say that a HamiltonianH is
entanglingon some set of qudits if it is not possible to par-
tition this set of qudits into two nontrivial setsS andS such
that every termHa in the expansion ofH couples either a
subset ofS or of S. In graph-theoretic language, if the qudits
corresponded to vertices on a hypergraph and the couplings
corresponded to hyperedges, the condition that the Hamil-
tonian is entangling on a set of qudits is simply that the
hypergraph connects this set. As such we say that a Hamil-
tonianconnectsthe set of qudits it entangles.

Our strategy for demonstrating universality in this paper
is to show that some set of resources is capable of simulating
another set already known to be universal. In particular, we
make reference to two theorems that categorize large classes
of Hamiltonians as universal up to single-qudit unitary op-
erations. The first was mentioned in the Introduction: two-
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body entangling Hamiltonians are universal for quantum
computationf10g. Using the terminology just introduced, this
theorem may be stated as followsf10g.

Theorem 1. SupposeH is a two-body Hamiltonian, that is,
every coupling term in the Gell-Mann expansion ofH
couples at most two qudits. IfH is entangling on a set ofn
quditssthat is, the coupling terms inH connect these quditsd
then evolutions ofH together with single-qudit unitary op-
erations are universal for quantum computation on thesen
qudits.

The second universality theorem that we use involves
Hamiltonians acting on sets of qubits that have coupling
terms that may couple more than two qubits. This theorem is
statedf29g as follows.

Theorem 2. SupposeH is an arbitary entangling Hamil-
tonian on a set ofn qubits. Evolutions ofH and single-qubit
unitary operations are universal on thosen qubits if and only
if the Gell-Mannsi.e., Paulid expansion ofH contains at least
one coupling term that couples an even number of qubits.

Theorem 2 tells us that for a Hamiltonian acting on qubits
alone to be universal, it must have a coupling term acting on
an even number of qubits. IfH does not contain such a
coupling term then we shall call it anoddHamiltonian, since
all its terms couple an odd number of qubits. What can the
odd Hamiltonians simulate? This question was also answered
in f29g.

Theorem 3. Let H be an odd entangling Hamiltonian, that
is, every term in the Gell-Mann expansion ofH couples an
odd number of qubits. ThenH and single-qubit unitaries can
simulate any other odd Hamiltonian on then qubits.

Referencef29g also demonstrated that the Lie algebra
generated by the odd entangling Hamiltonians onn qubits
sand local unitariesd corresponds to the Lie algebrassos2nd
andsps2nd, for even or oddn respectively. Furthermore,f29g
showed that the odd Hamiltonians can be made universal
with appropriate encodings.

In this paper we demonstrate that if a Hamiltonian is en-
tangling on a set of qudits, then this Hamiltonian is universal
on those qubits, when assisted by local unitary operations.
The only exception to this result is the special case when the
Hamiltonian is an odd Hamiltonian acting on qubits only.

C. Outline

Theorem 1 shows that if a Hamiltonian connects a set of
qudits with two-qudit couplings then this Hamiltonian is uni-
versal with single-qudit unitaries. Our strategy in this paper
is to show that a many-body Hamiltoniansthat is not one of
the odd qubit-only Hamiltoniansd connecting a set ofn qudits
can simulate a two-body Hamiltonian connecting the same
set of qudits. This is done by defining a series of simulation
protocols, each identifying broad classes of Hamiltonians
that any entangling Hamiltonian can simulate, until we arrive
at the eventual result.

The structure of the paper is as follows. In Sec. II we
introduce some simple general simulation techniques that are
used often in this paper. Section III introduces a simulation
technique known asterm isolation. This simulation tech-
nique allows us to simulate any particular coupling term,Ha,

that is present in the Gell-Mann expansion ofH, thusisolat-
ing the term. In Sec. IV we show that given some term cou-
pling k qudits, we can simulate new coupling terms that
couple fewer thank qudits. We also discuss the limitations
on this type of simulation. Section V examines how we can
use a term that couplesk qudits to simulate a coupling be-
tween two qudits. Finally we prove the main result of the
paper: that the only nonuniversal class of entangling Hamil-
tonians is the class of odd Hamiltonians. This is argued
through an exhaustive demonstration that alln-qudit entan-
gling Hamiltonians other than the odd many-qubit Hamilto-
nians are indeed universal.

II. SIMPLE SIMULATIONS

In this section, we review some simple Hamiltonian simu-
lation techniques studied in previous papersf3–12g, and that
will form the basis for our later results. By a Hamiltonian
simulation we mean a sequence of evolutions due to our
system Hamiltonian,H, which is assumed fixed, interleaved
with single-qudit unitary operations. The goal is to approxi-
mate sto arbitrary accuracyd evolution according to some
other Hamiltonian. If that is possible for some desired
Hamiltonian we say that Hamiltonian can besimulated. The
theory of Lie algebras and Lie groups ensures that the tech-
niques decribed in this section exhaust the set of possible
simulations that can be performed given some Hamiltonian
and single-qudit unitaries.

A. Conjugation by a unitary operator

A quantum system with HamiltonianH evolves in time
via the unitary operatione−iHt. Say we are also given the
ability to perform some unitary operation,U, and its inverse,
U†. Then performing the sequence of unitary operations
Ue−iHtU†=e−iUHU†t, we see that we can simulate an evolution
according to the conjugated HamiltonianUHU†. In this pa-
per, as we have given ourselves the ability to perform arbi-
trary single-qudit unitaries, we will often conjugate a Hamil-
tonian by unitaries of the formU=U1 ^ U2 ^ ¯ ^ Un.

B. Simulating linear combinations

Suppose we can simulate two different Hamiltonians,H1
and H2. Then we can simulate the sum of these Hamilto-
nians, sincee−iH1De−iH2D<e−isH1+H2dD for small D, and with
successive evolutions we can simulate the HamiltonianH1
+H2 for an arbitrary timet. Imagine that we could evolve our
system by a whole set of Hamiltonians,H, and their
negatives.1 It follows that we can simulate arbitrary linear
combinations of any of the elements ofH.

1Given that we can simulateH, it turns out always to be possible
to simulate −H, using single-qudit unitary operations. This follows
from Eq.s11d, later in the paper, which shows how to express −H as
a sum of terms of the formUHU†, whereU are local unitary op-
erations. By the methods of simulation we’ve already introduced, it
follows that −H can be simulated.
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C. Simulating commutators of Hamiltonians

Another simple simulation protocol that can be performed
is the simulation of a commutator of two different Hamilto-
nians. This is possible as e−iH1DeiH2DeiH1De−iH2D

<e−isifH1,H2gdD2
. So if we can simulateH1, H2 and their nega-

tions we can simulate the commutator of these Hamiltonians.

D. Simulating Hamiltonians that couple the same qudits

Consider the general expression for a Hamiltonian acting
on a system of qudits in Eqs.s1d ands2d, and recall thatHa

couples a set of quditsSa. We now introduce a theorem from
f8g to show it is possible to useHa and single-qudit unitaries
to exactly simulate any other coupling term that couples the
set of quditsSa:

Theorem 4. Let A and B be any two traceless Hermitian
operators ind dimensions and assume thatBÞ0. There is an
algorithm to find a set of at mostd2 unitary operators,Un,
and constantscn.0 such that

A = o
n

cnUnBUn
†. s6d

Key to proving this theorem is a result from the theory of
operator majorization, Uhlmann’s theoremf35g. Although
we do not need the theory of majorization in this paper, for
the benefit of readers familiar with majorization, we make
the following summary remarks. Recall that Uhlmann’s theo-
rem tells us that ifPaQ sthat is,P is majorized byQd then
P=onpnUnQUn

†, for some unitary operatorsUn and somepn
that form a probability distribution. The proof of theorem 4
in f8g follows by showing thatAacB for some positive con-
stantc.

Any coupling termHa in H is a tensor product of traceless
terms acting onSa. If we replaceB in Theorem 4 by the
individual tensor factors appearing inHa, then we see that
we can simulate anyA that is a tensor product of traceless
Hermitian operators acting on the same setSa. This result
will be extremely useful in the remainder of this paper. It
tells us that if we can simulate some couplingHa, we can
simulate every other coupling on the same set of qudits.

III. TERM ISOLATION

In Sec. II D, we saw that any coupling term,Ha, in the
expansionH=oahaHa fEq. s1dg, could be used to simulate
any other coupling term that entangles the same set of qudits.
If we have a Hamiltonian that is simply a coupling term on a
given set of qudits, we can immediately say a great deal
about what can be simulated with that Hamiltonian. In gen-
eral we do not have this luxury of interpretation. Instead,
some general Hamiltonian,H=oaHa, has many different
coupling terms that couple many different sets of qudits.
Term isolation is a simulation technique that usesH and
single-qudit unitaries to simulate any particular termHa in
the expansion ofH alone.

Term isolation allows us to think aboutH in a different
way, showing that the ability to simulateH is equivalentto
the ability to simulate the coupling termshHaj individually.
Thus, we can perform our analysis entirely in terms of the set

hHaj and still encapsulate all of the Hamiltonian simulation
properties ofH. Given that the elements of the sethHaj have
a much simpler structure than a generalH, term isolation is a
powerful tool for analysis.

We now show that term isolation can always be per-
formed. If we demonstrate that we can useH and single-
qudit unitaries to simulate someHa coupling an arbitrarily
chosen set of qudits, then we know from Sec. II D that it can
be used to simulate any other term coupling the same qudits.

Without loss of generality we may assume that the term
being isolated is of the form

Ha = ^
j=1

k

Wbj

s jd
^ I ^n−k, s7d

wherek is the number of qudits in the setSa. To see that
there is no loss of generality in assuming this form, note that
we can always relabel the qudits inSa so that they are the
first k qudits in the system, and any operatorsXab or Yab in
Ha are equivalent under local unitaries toW2.

Any term in the expansion ofH, Hb, that is not the term
Ha that we wish to keep, is different fromHa in at least one
of three ways.

Case 1: Hb has terms acting nontrivially on qudits outside
of Sa, the set of qudits upon whichHa acts.

Case 2: Hb acts on a strict subset ofSa.
Case 3: Hb acts on the same qudits asHa but is a tensor

product of different elements of the Gell-Mann basis. That is,
HaÞHb, even thoughHb couples the setSa.

Each of these cases identifies a special difference between
Ha and Hb. In the following sections these differences are
exploited to define simulations that remove undesirable
terms.

As we have previously stated, every simulation in this
section may be represented as a sequence of linear combina-
tions, commutators and conjugations by local unitaries. We
often denote a sequence of operations of this type on a
Hamiltonian,H, by a scripted letter. For example, in Sec.
III A we define the depolarizing channel, which is a linear
combination of conjugations by local unitaries, and write
DfHg=HD to symbolize the depolarizing channel acting on
H, resulting in the simulated HamiltonianHD. The action of
D on H defines a simulation. We can also compose simula-
tion techniques, so, for example, in Sec. III B we define a
simulationT fHDg=HT.

A. Case 1

We begin by noting the identity

o
Up

UpJUp
† = d trsJdI , s8d

whereJ is an operator acting on some qudit of dimensiond
and the sum is over alld2 elements of thed-dimensional
Pauli group,2 where we omit repeated summation when two

2The properties of thed-dimensional Pauli group were extensively
studied inf36g. We will not use any further special properties of this
group and refer the interested reader tof36g for further information.
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elements in the Pauli group differ merely by a phase factor.
We note there is a simple extension of Eq.s8d for multiple-
qudit systems,

o
Up

s jd
sUp

s1d
^ ¯ ^ Up

snddJsUp
s1d

^ ¯ ^ Up
sndd† = D trsJdI ^n,

s9d

where the superscripts indicate the different qudit systems, of
respective dimensionds jd, D=ds1d , . . . ,dsnd is the dimension
of the combined system,I represents the appropriate identity
operator for each subsystem, and the sum is over conjuga-
tions by all elements of the Pauli group for each qudit, again
omitting repeated sums over elements that are the same up to
a phase factor.

We define the simulationDfHg=HD to be the multiple-
qudit depolarizing channel acting on then−k qudits that are
not coupled byHa,

DfHg = o
Up

s jd
sUp

sk+1d
^ ¯ ^ Up

snddHsUp
sk+1d

^ ¯ ^ Up
sndd†

= HD. s10d

Ha acts on the firstk qudits of ann-qudit system, that is, the
set Sa. If we examine the simulated Hamiltonian,HD, we
find from Equations9d that any termsHb in H that act non-
trivially on qudits outside the setSa are eliminated. The
simulation leaves the coupling termHa unchanged except for
an unimportant positive scaling factor. Thus we have re-
moved all the case 1 termsHb from the Hamiltonian, and
need only consider the remaining case 2 and case 3 terms.

B. Case 2

The HamiltonianHD is a linear combination of terms that
couple the set of quditsSa or some subset ofSa. It turns out
that we can use another extension of Eq.s8d to simulate a
Hamiltonian,HT, that only has terms that couple the setSa.
In Eq. s8d, if J is a traceless operator we find that the right-
hand side of the equation is zero. Noting thatI is an element
of the Pauli group, we find

o
UpÞI

UpJUp
† = − J, s11d

which always holds for tracelessJ. Using single-qudit uni-
taries from the Pauli group we consider the following sum-
mation:

o
Up

s1dÞI,Up
s2dÞI

sUp
s1d

^ Up
s2ddsJs1d

^ Js2ddsUp
s1d

^ Up
s2dd†.

s12d

If Js1d and Js2d are traceless, this expression is equal to
Js1d ^ Js2d. If Js2d is traceless andJs1d is the identity, this ex-
pression is equal to −fsds1dd2−1gI ^ Js2d. With this in mind we
define a simulation:

T s jdfHg ; (sds jdd2 − 1)H

+ o
Up

s1d,Up
s jdÞI

sUp
s1d

^ Up
s jddHsUp

s1d
^ Up

s jdd†.

s13d

PerformingT s jd for j =2, . . . ,k, only terms that couple the
same qudits asHa are not eliminated. So performing the
following sequence of simulations,

T fHDg = T skd[T sk−1df¯[T s2dfHDg] ¯ g] = HT s14d

the simulated Hamiltonian,HT, is a linear combination of
terms that couple the same qudits asHa.

C. Case 3

We have shown how to simulate a HamiltonianHT that
only contains terms which couple the same qudits asHa. To
eliminate the remaining terms we define the following opera-
tors that are both unitary and Hermitian:

Za ; I − 2ualkau = o
j=1

d

u jlk j u − 2ualkau. s15d

Notice that theZa operators commute with each of the Cartan
subalgebra elements,Wm, in Eq. s3d. Hence, each of theZa
will also commute withHa as it is a tensor product of ele-
ments of the Cartan subalgebra. Further notice thatZa anti-
commutes withXlm and Ylm if a= l or a=m and commutes
otherwise. We can use this fact to define a simulation that
eliminates terms withXlm and Ylm operators present inHT.
We define a simulation

Za
s jdfHg = H + Za

s jdHZa
s jd, s16d

where the superscriptj indicates aZa operator acting on the
j th qudit, with identities acting elsewhere. If there exists any
term with anXlm or Ylm operator on thej th qudit, and such
that a= l or a=m, then this term will be eliminated fromHT

by the simulationZa
s jdfHTg. Expanding on this idea we can

eliminate every term on thej th qudit that has the formXlm or
Ylm by performing the following simulation:

Zs jdfHTg ; Zd
s jd[Zsd−1d

s jd f¯[Z1
s jdfHTg] ¯ g] , s17d

whered is the dimension of thej th qudit. The effect of this
simulation onHa is simply to rescale it. Now, if we perform
the simulationZs jd for each qudit inSa,

ZfHTg = Zskd[Zsk−1df¯[Zs1dfHTg] ¯ g] = HZ, s18d

all that remains in the newly simulated Hamiltonian,HZ, is a
linear combination of terms that commute with the Cartan
subalgebra elements. We have now simulated a Hamiltonian
with no X- andY-type terms.

HZ is a linear combination of terms that are tensor prod-
ucts of operators from the Cartan subalgebra. Consider the
unitary representation,Ps jdspd, of the permutation group
Sbj−1 that permutes the elements of the diagonal basis of the
Cartan subalgebra,ual, for a=1, . . . ,bj −1 on the j th qudit.
When aùbj we havePs jdspdWaP

s jd†spd=Wa. When a,bj,

SIMULATING HAMILTONIAN DYNAMICS USING MANY- … PHYSICAL REVIEW A 71, 052312s2005d

052312-5



we find that the effect of conjugatingWa by a permutation
operation is to shift around the diagonal elements ofWa.
Now, we can eliminate any terms inHZ that contain an op-
eratorWa

s jd with a,bj by performing the simulation

Ps jdfHZg = o
p[Sb−1

Ps jdHZPs jd†. s19d

This works becauseWa
s jd is a diagonal, traceless operator and

the permutation,Ps jd, distributes each of the diagonal ele-
ments ofWa

s jd equally. The effect ofPs jd on termsWa
s jd acting

on the j th qudit and withaùbj is to simply scale them by a
factor of sbj −1d!. Performing the following simulation,

PfHZg = Pskd[Psk−1df¯[Ps1dfHZg] ¯ g] = HP, s20d

we produce a HamiltonianHP that is a linear combination of
terms that couple the same qudits asHa and are tensor prod-
ucts of operatorsWa with aùbj.

In Sec. II C we pointed out that it is possible to simulate a
Hamiltonian proportional to the commutator of two Hamil-
tonians that are both simulatable. Now, we note that the com-
mutator −ifWa

s jd ,Xbj−1bj
g=0 if a.bj. If a=bj we find

−ifWbj

s jd ,Xbj−1bj
g=sÎbj /Îbj −1dYbj−1bj

. We can make use of
this distinction to find a way to remove the unwanted terms
from HP. We define the simulation

Xs jdfHg ; − ifH,Xbj−1bj

s jd g. s21d

Then if we perform the following sequence of simulations,

XfHPg = Xskd[Xsk−1df¯[Xs1dfHPg] ¯ g] = HX, s22d

we find thatHX=s^ j=1
k Ybj−1,bj

d ^ I ^n−k, up to some unimpor-
tant but nonzero constant multiple. We have now simulated a
single coupling term that couples the same qudits asHa.
Recall in Sec. II D we noted that a coupling term can be used
with single-qudit unitaries to simulate any other term cou-
pling the same set of qudits. So, we can useHX and single-
qudit unitaries to simulateHa, the desired term. Thus we
have demonstrated that it is possible to isolateHa from H.

IV. SIMULATING NEW COUPLING TERMS

Term isolation shows that the ability to simulate a Hamil-
tonianH=oahaHa is equivalent to the ability to simulate the
set of coupling Hamiltonians,hHaj, given single-qudit uni-
tary operations. Additionally, we learned in Sec. II D that
givenHa and single-qudit unitaries we can simulate any cou-
pling term that couples the same qudits asHa. So far we
have not presented any way of simulating some coupling
term that couples a different set of qudits than any of the
terms in the sethHaj. In this section we will take a key step
towards a proof of universality, showing how to use single-
qudit unitaries and a termHa coupling k qudits in order to
simulate a term that couplesk−1 qudits.

A. Evaluation of commutators

In f29g it was shown that ifHa coupled qubits, its capacity
to simulate other coupling terms depended on the number of

qubits that it coupled. More specifically, it was shown that if
Ha coupledk qubits andk was an odd number, thenHa could
not be used with single-qubit unitaries to simulate a coupling
term that coupledk−1 qubits. One way of seeing why this is
true is to examine the commutator of two Hamiltonians,
fHa ,Hbg, that couple the same set of qubitsSa. It is easy to
show that the commutatorfHa ,HbgÞ0 if and only if there
are an odd number of locations inSa whereHa andHb differ.
From this restriction it is possible to prove, as was done in
f29g, that coupling terms coupling an odd number of qubits
can only ever simulate other Hamiltonians that have odd
couplings.

What is different when not all the systems are qubits? The
purpose of this subsection is to investigate the commutator of
two specially chosen couplingsHa and Hb that couple the
same set of qudits,Sa. In the case of qubits, it is not difficult
to convince oneself that whenSa contains anevennumber of
qubits, the commutatorfHa ,Hbg is either zero, or else
couples a set of qubits that is astrict subset of the original set
Sa. We will show by an explicit calculation that when one or
more of the systems is not a qubit, it is possible to chooseHa

andHb so that the commutatorfHa ,Hbg contains terms cou-
pling the entire setSa. Remarkably, we will see in the re-
mainder of the paper that this is the key fact that simplifies
the study of universality when not all the systems are qubits.

We begin by choosingHa= ^ j=1
k Xab

s jd and Hb= ^ j=1
k X

ab8
s jd

where for all j we setbÞb8. sWe assume initially that all
systems are of dimension 3 or greater.d Given these forms for
Ha andHb, what doesfHa ,Hbg look like? We find

fHa,Hbg = ^
j=1

k
1

2Î2
sXbb8

s jd + iYbb8
s jd d − ^

j=1

k
1

2Î2
sXbb8

s jd − iYbb8
s jd d.

s23d

This expression contains Hermitian and skew-Hermitian
terms. Upon expansion of the above expression we find that
all of the Hermitian terms sum to zero, leaving only a sum of
skew-Hermitian terms remaining. These terms correspond to
a sum of tensor product terms containing odd numbers of
Ybb8 terms. All of the terms couple the entire setSa. It is easy
to verify that this sum is always nonzero, simply by inspec-
tion of the coefficients of the relevant terms.

So far we have only considered the case where we could
choose to simulateHa andHb for Xab

s jd andX
ab8
s jd , bÞb8. We

can only do this when each subsystem has dimensiond.2.
If we have subsystems whered=2, the situation changes
slightly, but the results are similar, provided not all of the
subsystems are qubits.

For every j where the qudit has dimensiond.2 we
chooseHa

s jd=Xab
s jd and Hb

s jd=X
ab8
s jd with bÞb8. For every j

where the qudit has dimensiond=2, we chooseHa
s jd=X, and

Hb
s jd=Y. ProvidedHa and Hb do not couple qubits exclu-

sively, a straightforward calculation along lines similar to
that already done shows thatfHa ,Hbg is a nonzero sum of
terms, each of which is skew-Hermitian and couples allk
qudits. The only subtlety in the calculation is the need to
analyze separately the cases where there are anevennumber
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of qubits in the setSa, which gives rise to a commutator
which is a nonzero sum of tensor product terms containing
an odd number ofYbb8 terms, and the case where there are an
odd number of qubits in the setSa, which gives rise to a
commutator which is a nonzero sum of tensor product terms
containing an even number ofYbb8 terms.

B. Simulating identity operators

Given some term,Ha, coupling a set of quditsSa, we
show how the results on commutators just obtained allow us
to simulate other coupling term that couples a subset ofSa

with just one qudit removed, more precisely, as follows.
Lemma 1. Given the ability to evolve viaHa= ^ j=1

n Ha
s jd,

which couplesk qudits, and local unitary operations, it is
possible to simulateH8 such that

H8 = I ^ Hg, s24d

provided Ha does not couple qubits exclusively. The cou-
pling termHg may couple anyk−1 qudit subset ofSa, sub-
ject to the constraint that the subset not be qubits exclusively.

Proof.GivenHa we can simulate any other coupling term,
Hb= ^ j=1

n Hb
s jd, that acts nontrivially on the same set ofk qu-

dits, Sa. We label the qudits so thatSa consists of qudits
1, . . . ,k, and so that our goal is to simulate a coupling on
qudits 2, . . . ,k, i.e., the goal is to remove qudit 1. To this end,
we chooseHb

s1d so thatHa
s1d=Hb

s1d. Note that, by assumption,
the set 2, . . . ,k does not contain qubits exclusively. Evaluat-
ing the commutator, we find

ifHa,Hbg = isHa
s1dd2

^ F^
j=2

n

Ha
s jd, ^

j=2

n

Hb
s jdG . s25d

We note thatsHa
s1dd2 is a positive operator and thus is not

traceless. Hence, if we apply the depolarizing channel, Eq.
s8d, to the first qudit we can simulate an identity term acting
on the first qudit. If we do this and setN; ^ j=2

n Ha
s jd, N8;

^ j=2
n Hb

s jd we simulate

H8 = iI ^ fN,N8g. s26d

Finally, we note that asN and N8 don’t act exclusively on
qubits, our earlier results on commutators show that we can
ensure thatfN, N8g is a nonzero linear combination of terms
that coupleSa, less the first qudit. Term isolation allows us to
simulate one of the coupling terms infN, N8g alone, i.e.,
H9= I ^ Hg, as required. j

V. UNIVERSALITY

Theorem 1 stated that if a set of qudits isconnectedby a
Hamiltonian,H, with two-body interactions, then evolutions
by H and single-qudit unitaries form a universal set of op-
erations on that set of quditsf10g. A set of 2-qudit coupling
terms connecting the same set of qudits is also universal as
they can simulate a two-body Hamiltonian on the set of qu-
dits. We prove in this section the main result of this paper:
that a generic Hamiltonian,H, entangling a set of qudits can
simulate a set of 2-qudit coupling terms connecting the qu-
dits, and is thus universal. The only exception to this rule is

the case whereH is a sum of odd coupling terms, as dis-
cussed inf29g, and summarized in theorems 2 and 3 in the
present paper.

We begin by proving theorem 5, which shows that a cou-
pling term,Ha, that couples a set ofk qudits,Sa, can be used
to simulate a set of 2-qudit couplings that connect the setSa.
This implies thatHa and single-qudit unitaries are a univer-
sal set on the quditsSa. We conclude with theorem 6, show-
ing that an arbitrary entangling Hamiltonian onn qudits is
universal for the qudits it entangles.

A. Theorem 5: Using a term coupling many qudits to simulate
a term coupling two qudits

Theorem 5. SupposeHa= ^ j=1
n Ha

s jd couplesk qudits. Then
Ha and single-qudit unitary operations can be used to simu-
late a set of two-qudit couplings connecting every qudit
coupled byHa, providedHa does not couple qubits exclu-
sively, andk.1. ThusHa and single-qudit unitaries are uni-
versal on the set of qudits coupled byHa.

Proof. Without loss of generality we may label the sys-
tems so thatHa couples systems 1 throughk, and system 1 is
not a qubit. Fixj in the range 2 throughk. Applying lemma
1 repeatedly, we see that we can simulate a Hamiltonian
coupling system 1 and systemj . It follows that Ha and
single-qudit unitaries are universal on the set of qudits
coupled byHa. j

B. Theorem 6: Which Hamiltonians are universal?

With Theorem 5 in mind, we now prove that the only
nonuniversal set of entangling Hamiltonians is the set of odd
Hamiltonians acting on qubits alone.

Theorem 6. Single-qudit unitary operations, and evolu-
tions via a Hamiltonian,H, that connects a set ofn qudits, is
a universal set of operations on thosen qudits if and only if
H is not an odd Hamiltonian acting on qubits alone.

Proof. The forward implication follows from Theorem 2,
as does the reverse implication when all systems are qubits.
Thus, all that needs proof is the reverse implication in the
case whenH is an entangling Hamiltonian that does not act
exclusively on qubits. We will show how to construct a set of
two-body couplings that connect alln qudits.

To construct this set, begin by picking a system that is not
a qubit, and label it system 1. We will explain how to con-
struct a set,S, of systems to which 1 can be coupled via a
two-body interaction. We begin by settingS=h1j, and aim to
add in other systems that can be coupled to 1 via two-body
interactions. Our strategy is to show that providedS is not
yet maximal, i.e., does not yet contain alln qudits, then it is
always possible to add an extra qudit intoS.

To see this, supposeS is not yet maximal. Then it is
always possible to pick a quditj inside S and a quditk
outside ofS such thatH contains a coupling termHjk which
couples systemsj andk. sOther systems may also be coupled
by Hjk.d In the case when eitherj or k is not a qubit, theorem
5 shows that a term coupling justj andk may be simulated.
Theorem 1 implies that we can also simulate a term coupling
system 1 andk, and so systemk may be added toS.
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The other possible case is whenj andk are both qubits. In
this case, suppose without loss of generality thatHjk has the
form Xs jd ^ Xskd ^¯, where the superscripts label the sys-
tems. We may also simulate the couplingX12

s1d
^ Zs jd, since

systemj is in S. Taking the commutator of these two cou-
plings, we see that we may simulate couplings of the form
X12

s1d
^ Ys jd ^ Xskd ^¯ . Applying Theorem 5, we see that it is

possible to simulate a two-body coupling between system 1
andk, and thus systemk may be added toS. j

VI. CONCLUSION

We have demonstrated that many-qudit Hamiltonians
combined with local unitary operations are always universal
for simulation on any connected set of subsystems upon
which the interactions act nontrivially,providedthat Hamil-
tonian is not an odd Hamiltonian acting on qubits. This result
is rather intriguing and elegant, especially in the light of the
general lack of broad results for many-bodysas opposed to
two-bodyd problems in quantum information science. In the
study of pure state bipartite entangled states, for example, a
single unit of currency, the maximally entangled state, has
been identified and the fungible nature of this currency has
been established. On the other hand, a similar currency and
set of fungible transformations has not been identified for
systems consisting of more than two parties. Given this dif-
ficulty in understanding the structure of quantum states, it is

quite remarkable that, with the exception of odd entangling
Hamiltonians, all of the different many-qudit interactions are
equivalent. Even in the case of odd entangling Hamiltonians,
universal simulation can be achieved using an encoding
which wastes only a single extra qubit of spacef29g. Thus
there is a real sense in which, for simulation, all interactions
have been created equal.

Part of the simplicity of our result stems from our focus
on universality for simulation as opposed to universality for
quantum computation, which requires that issues ofeffi-
ciencybe taken into account. When one adds the requirement
of efficiency of simulation, then problems of universality be-
come much more difficult: indeed this is perhaps one of the
fundamental problems in the study of the computational
complexity of quantum circuits. A well-developed theory of
efficient simulation is a task of great importance and, judging
from the difficulties encountered in proving lower bounds for
problems in classical circuit complexity, this task is probably
an immensely difficult problem. This paper can be seen,
however, as a necessary precursor to any attempt to advance
this program.
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