There is a natural relationship between Jones polynomials and quantum
computation. We use this relationship to show that the complexity of evaluating
relative-error approximations of Jones polynomials can be used to bound the
classical complexity of approximately simulating random quantum computations.
We prove that random quantum computations cannot be classically simulated up to
a constant total variation distance, under the assumption that (1) the
Polynomial Hierarchy does not collapse and (2) the average-case complexity of
relative-error approximations of the Jones polynomial matches the worst-case
complexity over a constant fraction of random links. Our results provide a
straightforward relationship between the approximation of Jones polynomials and
the complexity of random quantum computations.Comment: 8 pages, 4 figure