101 research outputs found

    Design for Future Internet Service Infrastructures

    Get PDF
    This paper presents current research in the design and integration of advance systems, service and management technologies into a new generation of Service Infrastructure for Future Internet of Services, which includes Service Clouds Computing. These developments are part of the FP7 RESERVOIR project and represent a creative mixture of service and network virtualisation, service computing, network and service management techniques

    Runtime Verification Through Forward Chaining

    Get PDF
    In this paper we present a novel rule-based approach for Runtime Verification of FLTL properties over finite but expanding traces. Our system exploits Horn clauses in implication form and relies on a forward chaining-based monitoring algorithm. This approach avoids the branching structure and exponential complexity typical of tableaux-based formulations, creating monitors with a single state and a fixed number of rules. This allows for a fast and scalable tool for Runtime Verification: we present the technical details together with a working implementation

    Virtual machine consolidated placement based on multi-objective biogeography-based optimization

    Get PDF
    Virtual machine placement (VMP) is an important issue in selecting most suitable set of physical machines (PMs) for a set of virtual machines (VMs) in cloud computing environment. VMP problem consists of two sub problems: incremental placement (VMiP) problem and consolidated placement (VMcP) problem. The goal of VMcP is to consolidate the VMs to more suitable PMs. The challenge in VMcP problem is how to find optimal solution effectively and efficiently especially when VMcP is a kind of NP-hard problem. In this paper, we present a novel solution to the VMcP problem called VMPMBBO. The proposed VMPMBBO treats VMcP problem as a complex system and utilizes the biogeography-based optimization (BBO) technique to optimize the virtual machine placement that minimizes both the resource wastage and the power consumption at the same time. Extensive experiments have been conducted using synthetic data from related literature and data from two real datasets. First of all, the necessity of VMcP has been proved by experimental results obtained by applying VMPMBBO. Then, the proposed method is compared with two existing multi-objective VMcP optimization algorithms and it is shown that VMPMBBO has better convergence characteristics and is more computationally efficient as well as robust. And then, the issue of parameter setting of the proposed method has been discussed. Finally, adaptability and extensibility of VMPMBBO have also been proved through experimental results. To the best of our knowledge, this work is the first approach that applies biogeography-based optimization (BBO) to virtual machine placement

    MEDAL: An AI-Driven Data Fabric Concept for Elastic Cloud-to-Edge Intelligence

    Get PDF
    Current Cloud solutions for Edge Computing are inefficient for data-centric applications, as they focus on the IaaS/PaaS level and they miss the data modeling and operations perspective. Consequently, Edge Computing opportunities are lost due to cumbersome and data assets-agnostic processes for end-to-end deployment over the Cloud-to-Edge continuum. In this paper, we introduce MEDAL, an intelligent Cloud-to-Edge Data Fabric to support Data Operations (DataOps)across the continuum and to automate management and orchestration operations over a combined view of the data and the resource layer. MEDAL facilitates building and managing data workflows on top of existing flexible and composable data services, seamlessly exploiting and federating IaaS/PaaS/SaaS resources across different Cloud and Edge environments. We describe the MEDAL Platform as a usable tool for Data Scientists and Engineers, encompassing our concept and we illustrate its application though a connected cars use case

    SNMP GetPrev: an efficient way to browse large MIB tables

    Full text link

    A Practical Near Optimal Deployment of Service Function Chains in Edge-to-Cloud Networks

    Full text link
    Mobile edge computing offers a myriad of opportunities to innovate and introduce novel applications, thereby enhancing user experiences considerably. A critical issue extensively investigated in this domain is efficient deployment of Service Function Chains (SFCs) across the physical network, spanning from the edge to the cloud. This problem is known to be NP-hard. As a result of its practical importance, there is significant interest in the development of high-quality sub-optimal solutions. In this paper, we consider this problem and propose a novel near-optimal heuristic that is extremely efficient and scalable. We compare our solution to the state-of-the-art heuristic and to the theoretical optimum. In our large-scale evaluations, we use realistic topologies which were previously reported in the literature. We demonstrate that the execution time offered by our solution grows slowly as the number of Virtual Network Function (VNF) forwarding graph embedding requests grows, and it handles one million requests in slightly more than 20 seconds for 100 nodes and 150 edges physical topology.Accepted to IEEE INFOCOM 202

    Programmable Edge-to-Cloud Virtualization for 5G Media Industry: The 5G-MEDIA Approach

    Get PDF
    To ensure high Quality of Experience (QoE) for end users, many media applications require significant quantities of computing and network resources, making their realization challenging in resource constrained environments. In this paper, we present the approach of the 5G-MEDIA project, providing an integrated programmable service platform for the development, design and operations of media applications in 5G networks, facilitating media service management across the service life cycle. The platform offers tools to service developers for efficient development, testing and continuous correction of services. One step further, it provides a service virtualization platform offering horizontal services, such as a Media Service Catalogue and accounting services, as well as optimization mechanisms to flexibly adapt service operations to dynamic conditions with efficient use of infrastructure resources. The paper outlines three use cases where the platform was tested and validated

    Towards Serverless NFV for 5G Media Applications

    Get PDF
    The advent of virtualization and IaaS have revolutionized the telecom industry via SDN/NFV. A new wave of cloud-native PaaS promises to further improve SDN/NFV performance, portability, and cost-efficiency. In this poster, we highlight a work in progress being done in the 5G-MEDIA project [2], which pioneers the application of the serverless paradigm to NFV in the context of media intensive applications in 5G networks. Motivational use cases include tele-immersive gaming, mobile journalism and UHD content distribution. For example, consider a next-gen e-sport, in which bouts between gamers last only a few minutes. FaaS offers a clear cost-efficiency benefit for hosting such applications. An architecture is shown in Fig. 1. It includes i) an Application/Service Development Kit (SDK) to enable access to media applications development tools; ii) a Service Virtualization Platform (SVP) to run the ETSI MANO framework, the Media Service MAPE optimization component and the VIM and WIM plugins to enable NFVIs integration; iii) different NFVIs to execute media-specific VNFs. FaaS VIM is implemented for integration of FaaS with the rest of the MANO stack. It allows mixing FaaS and "regular" VNFs within the same media forwarding graph. For reference implementation, Apache OpenWhisk [1] and Kubernetes are used. The main challenge is extending the programming model to support groups of actions communicating over a network, while retaining the simplicity of FaaS

    A service platform architecture enabling programmable edge-to-cloud virtualization for the 5G Media industry

    Get PDF
    Media applications are amongst the most demanding services in terms of resources, requiring huge network capacity for high bandwidth audio-visual and other mobile sensory streams. The 5G-MEDIA project aims at innovating media-related applications by investigating how these applications and the underlying 5G network should be coupled and interwork to the benefit of both. The 5G-MEDIA approach aims at delivering an integrated programmable service platform for the development, design and operations of media applications in 5G networks by providing mechanisms to flexibly adapt service operations to dynamic conditions and react upon events (e.g. to transparently accommodate auto-scaling of resources, VNF replacement, etc.). In this paper we present the 5G-MEDIA service platform architecture, which has been specifically designed to enable the development and operation of services for the nascent 5G media industry. Our approach delivers an integrated programmable service platform for the development, design and operations of media applications in 5G networks
    corecore