1,264 research outputs found
Recommended from our members
Control of radionuclide transport in sodium-cooled reactor primary circuits
In order to be economically viable, sodium-cooled reactors must operate at fairly high temperatures (500/sup 0/C) and with long, uninterrupted fuel cycles. These conditions increase the potential for radioactive corrosion product transport; achieving the goal of long uninterrupted fuel cycles means that release and transport of fission products from breached fuel pins will undoubtedly have to be controlled. This ppaper shows that control of radioactive material transport is an achievable goal
Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2
The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements
Efficient room-temperature light-emitters based on partly amorphised Ge quantum dots in crystalline Si
Semiconductor light emitters compatible with standard Si integration
technology (SIT) are of particular interest for overcoming limitations in the
operating speed of microelectronic devices 1-3. Light sources based on group-IV
elements would be SIT compatible but suffer from the poor optoelectronic
properties of bulk Si and Ge. Here, we demonstrate that epitaxially grown Ge
quantum dots (QDs) in a fully coherent Si matrix show extraordinary optical
properties if partially amorphised by Ge-ion bombardment (GIB). The GIB-QDs
exhibit a quasi-direct-band gap and show, in contrast to conventional SiGe
nanostructures, almost no thermal quenching of the photoluminescence (PL) up to
room-temperature (RT). Microdisk resonators with embedded GIB-QDs exhibit
threshold-behaviour and super-linear increase of the integrated PL-intensity
(IPL) with increasing excitation power Pexc which indicates light amplification
by stimulated emission in a fully SIT-compatible group-IV nano-system
The central limit problem for random vectors with symmetries
Motivated by the central limit problem for convex bodies, we study normal
approximation of linear functionals of high-dimensional random vectors with
various types of symmetries. In particular, we obtain results for distributions
which are coordinatewise symmetric, uniform in a regular simplex, or
spherically symmetric. Our proofs are based on Stein's method of exchangeable
pairs; as far as we know, this approach has not previously been used in convex
geometry and we give a brief introduction to the classical method. The
spherically symmetric case is treated by a variation of Stein's method which is
adapted for continuous symmetries.Comment: AMS-LaTeX, uses xy-pic, 23 pages; v3: added new corollary to Theorem
Triangulations and Severi varieties
We consider the problem of constructing triangulations of projective planes
over Hurwitz algebras with minimal numbers of vertices. We observe that the
numbers of faces of each dimension must be equal to the dimensions of certain
representations of the automorphism groups of the corresponding Severi
varieties. We construct a complex involving these representations, which should
be considered as a geometric version of the (putative) triangulations
Photophysics of phycoerythrocyanins from the cyanobacterium Westiellopsis prolifica studied by time-resolved fluorescence and coherent anti-Stokes Raman scattering spectroscopy
Three building blocks of the antenna complexes of the cyanobacterium Westiellopsis prolifica were studied: PEC(X), which is similar to the α-subunit of phycoerythrocyanin (PEC), trimers of PEC and monomers derived from these by deaggregation with KSCN. The fit of the fluorescence decay curve of PEC(X) requires at least four exponentials, although it supposedly contains only one chromophore. The coherent anti-Stokes Raman scattering (CARS) spectra indicate that the heterogeneity observed is due to geometrical isomers, which are in part generated by photoinduced processes. A similar heterogeneity in chromophore structure and properties is also found in the monomers, where four exponentials are needed to fit the fluorescence decay curve. As in trimers, there is a long-lived, low-amplitude component, which can be assigned to impurities and/or oxidation products. The energy transfer time between the two phyocyanobilin chromophores in the β-subunit is about 500 ps; the lifetime of the fluorescing β-chromophore is 1.5 ns. The phycoviolobilin chromophore in the α-subunit adopts different geometries characterized by fluorescence lifetimes of about 240 and 800 ps. No evidence was found for energy transfer between the α-chromophore and the β-chromophores. This energy transfer occurs in trimers on a time scale of less than 20 ps; the energy transfer time between the two different types of β-chromophore is about 250 ps and the lifetime of the terminal emitter is about 1.5 ns. The excited state kinetics are therefore similar to those of PEC trimers from Mastigocladus laminosus, as are the CARS spectra, indicating a similar chromophore—protein arrangement. In comparison with phycocyanin, the ordering of the excited states of chromophores β84 and β155 may be changed. Although PEC trimers of Westiellopsis prolifica show almost as good a photostability as trimers of Mastigocladus laminosus, monomers are so photolabile that no CARS spectra could be recorded
Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model
Abstract Background Mesenchymal stromal cells (MSC) have shown promising results in the treatment of tendinopathy in equine medicine, making this therapeutic approach seem favorable for translation to human medicine. Having demonstrated that MSC engraft within the tendon lesions after local injection in an equine model, we hypothesized that they would improve tendon healing superior to serum injection alone. Methods Quadrilateral tendon lesions were induced in six horses by mechanical tissue disruption combined with collagenase application 3 weeks before treatment. Adipose-derived MSC suspended in serum or serum alone were then injected intralesionally. Clinical examinations, ultrasound and magnetic resonance imaging were performed over 24 weeks. Tendon biopsies for histological assessment were taken from the hindlimbs 3 weeks after treatment. Horses were sacrificed after 24 weeks and forelimb tendons were subjected to macroscopic and histological examination as well as analysis of musculoskeletal marker expression. Results Tendons injected with MSC showed a transient increase in inflammation and lesion size, as indicated by clinical and imaging parameters between week 3 and 6 (p < 0.05). Thereafter, symptoms decreased in both groups and, except that in MSC-treated tendons, mean lesion signal intensity as seen in T2w magnetic resonance imaging and cellularity as seen in the histology (p < 0.05) were lower, no major differences could be found at week 24. Conclusions These data suggest that MSC have influenced the inflammatory reaction in a way not described in tendinopathy studies before. However, at the endpoint of the current study, 24 weeks after treatment, no distinct improvement was observed in MSC-treated tendons compared to the serum-injected controls. Future studies are necessary to elucidate whether and under which conditions MSC are beneficial for tendon healing before translation into human medicine
Trigonometry of 'complex Hermitian' type homogeneous symmetric spaces
This paper contains a thorough study of the trigonometry of the homogeneous
symmetric spaces in the Cayley-Klein-Dickson family of spaces of 'complex
Hermitian' type and rank-one. The complex Hermitian elliptic CP^N and
hyperbolic CH^N spaces, their analogues with indefinite Hermitian metric and
some non-compact symmetric spaces associated to SL(N+1,R) are the generic
members in this family. The method encapsulates trigonometry for this whole
family of spaces into a single "basic trigonometric group equation", and has
'universality' and '(self)-duality' as its distinctive traits. All previously
known results on the trigonometry of CP^N and CH^N follow as particular cases
of our general equations. The physical Quantum Space of States of any quantum
system belongs, as the complex Hermitian space member, to this parametrised
family; hence its trigonometry appears as a rather particular case of the
equations we obtain.Comment: 46 pages, LaTe
Combinatorial 3-manifolds with transitive cyclic symmetry
In this article we give combinatorial criteria to decide whether a transitive
cyclic combinatorial d-manifold can be generalized to an infinite family of
such complexes, together with an explicit construction in the case that such a
family exists. In addition, we substantially extend the classification of
combinatorial 3-manifolds with transitive cyclic symmetry up to 22 vertices.
Finally, a combination of these results is used to describe new infinite
families of transitive cyclic combinatorial manifolds and in particular a
family of neighborly combinatorial lens spaces of infinitely many distinct
topological types.Comment: 24 pages, 5 figures. Journal-ref: Discrete and Computational
Geometry, 51(2):394-426, 201
- …