57 research outputs found

    An Invitation to Higher Gauge Theory

    Get PDF
    In this easy introduction to higher gauge theory, we describe parallel transport for particles and strings in terms of 2-connections on 2-bundles. Just as ordinary gauge theory involves a gauge group, this generalization involves a gauge '2-group'. We focus on 6 examples. First, every abelian Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes, which play an important role in string theory and multisymplectic geometry. Second, every group representation gives a Lie 2-group; the representation of the Lorentz group on 4d Minkowski spacetime gives the Poincar\'e 2-group, which leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint representation of any Lie group on its own Lie algebra gives a 'tangent 2-group', which serves as a gauge 2-group in 4d BF theory, which has topological gravity as a special case. Fourth, every Lie group has an 'inner automorphism 2-group', which serves as the gauge group in 4d BF theory with cosmological constant term. Fifth, every Lie group has an 'automorphism 2-group', which plays an important role in the theory of nonabelian gerbes. And sixth, every compact simple Lie group gives a 'string 2-group'. We also touch upon higher structures such as the 'gravity 3-group' and the Lie 3-superalgebra that governs 11-dimensional supergravity.Comment: 60 pages, based on lectures at the 2nd School and Workshop on Quantum Gravity and Quantum Geometry at the 2009 Corfu Summer Institut

    Coronal Diagnostics from Narrowband Images around 30.4 nm

    Full text link
    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He II Ly alpha line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona the contribution from the nearby Si XI 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si XI line dominates the He II line from just above the limb up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit

    Forecasting stock returns using model-selection criteria

    No full text
    This paper examines the economic significance of return predictability in Australian equities. In light of considerable model uncertainty, formal model-selection criteria are used to choose a specification for the predictive model. A portfolio-switching strategy is implemented according to model predictions. Relative to a buy-and-hold market investment, the returns to the portfolio-switching strategy are impressive under several model-selection criteria, even after accounting for transaction costs. However, as these findings are not robust across other model-selection criteria examined, it is difficult to conclude that the degree of return predictability is economically significant

    Arterialised hepatic nodules in the Fontan circulation: Hepatico-cardiac interactions

    No full text
    Hypervascular nodules occur commonly when there is hepatic venous outlet obstruction. Their nature and determinants in the Fontan circulation is poorly understood. We reviewed the records of 27 consecutive Fontan patients who had computerized tomography scan (CT) over a 4 year period for arterialised nodules and alterations in hepatic flow patterns during contrast enhanced CT scans and related these findings to cardiac characteristics. Mean patient age was 24 ± 5.8 years, (range 16.7–39.8) and mean Fontan duration was 16.8 ± 4.8 years (range 7.3–28.7). Twenty-two patients demonstrated a reticular pattern of enhancement, 4 a zonal pattern and only 1 demonstrated normal enhancement pattern. Seven (26%) patients had a median of 4 (range 1–22) arterialised nodules, mean size 1.8 cm (range 0.5 to 3.2 cm). All nodules were located in the liver periphery, their outer aspect lying within 2 cm of the liver margin. Patients with nodules had higher mean RA pressures (18 mmHg ± 5.6 vs. 13 mmHg ± 4, p = 0.025), whereas their mixed venous saturation and aortic saturation was not significantly different (70% ± 11 vs. 67% ± 9 and 92% ± 10 vs. 94% ± 4, p &gt; 0.05). Post-mortem histology suggests focal nodular hyperplasia is the underlying pathology. ConclusionsAbnormalities of hepatic blood flow and the presence of arterialised nodules are common in the failing Fontan circulation. They occur especially when central venous pressures are high, and very likely indicate arterialisation of hepatic blood flow and reciprocal portal venous deprivation. The underlying pathology is most likely focal nodular hyperplasia.<br/
    • 

    corecore