625 research outputs found

    A pair potentials study of matrix-isolated atomic zinc. II. Intersystem crossing in rare-gas clusters and matrices

    Get PDF
    Journal ArticleThe mechanism of 4p 1P1?4p 3PJ intersystem crossing (ISC) following excitation of the 4p 1P1 level of matrix-isolated atomic zinc is investigated using a pair potentials approach. This is achieved by extending earlier ISC calculations on the Zn?RG2 and Zn?RG3 complexes to the square planar Zn?RG4 and square pyramidal Zn?RG5 species which are the building blocks of the Zn?RG18 cluster used to represent the isolation of atomic zinc in the substitutional site of a solid rare-gas host. ISC predictions in these clusters are based on whether crossing of the strongly bound 1A1 states, having a 4p 1P1 atomic asymptote, occurs with the repulsive 3E states correlating with the 4p 3PJ atomic level of atomic zinc. Predictions based on 1A1 /3E curve crossings for 3E states generated with the calculated ab initio points for the Zn?RG 3S(pz) states do not agree with matrix observations. Based on similar overestimation of ISC in the Zn?RG diatomics, less repulsive Zn?RG 3S(pz) potential curves are used resulting in excellent agreement between theory and observations in the Zn?RG matrix systems. 1A1 /3E curve crossings do not occur in the Zn?Ar system which shows only singlet emission. Curve crossings are found for the Zn?Xe system which exhibits only triplet emission. The Zn?Kr system does not show a crossing of the body mode Q2 , which exhibits a strong singlet emission at 258 nm while the waist mode Q3 , does have a crossing, resulting in a weak singlet emission at 239 nm and a stronger triplet emission at 312 nm. The efficiency of ISC is determined from Landau?Zener estimates of the surface hopping probabilities between the 1A1 and the 3E states. Differences in the application of this theory in the gas and solid phase are highlighted, indicating that the rapid dissipation of the excited-state energy which occurs in the solid must be included to obtain agreement with observations

    Mariner Mars 1971 optical navigation demonstration

    Get PDF
    The feasibility of using a combination of spacecraft-based optical data and earth-based Doppler data to perform near-real-time approach navigation was demonstrated by the Mariner Mars 71 Project. The important findings, conclusions, and recommendations are documented. A summary along with publications and papers giving additional details on the objectives of the demonstration are provided. Instrument calibration and performance as well as navigation and science results are reported

    A surprisingly simple electrostatic model explains bent vs. linear structures in M+-RG2 species (M = group 1 metal, Li–Fr; RG = rare gas, He–Rn)

    Get PDF
    It is found that a simple electrostatic model involving competition between the attractive dispersive interaction and induced-dipole repulsion between the two RG atoms performs extremely well in rationalizing the M+-RG2 geometries, where M = Group 1 metal and RG = rare gas. The Li+-RG2 and Na+-RG2 complexes have previously been found to exhibit quasilinear or linear minimum energy geometries, with the Na+-RG2 complexes having an additional bent local minimum [A. Andrejeva, A. M. Gardner, J. B. Graneek, R. J. Plowright, W. H. Breckenridge and T. G. Wright, J. Phys. Chem. A, 2013, 117, 13578]. In the present work, the geometries for M = K–Fr are found to be bent. A simple electrostatic model explains these conclusions and is able to account almost quantitatively for the binding energy of the second RG atom, as well as the form of the angular potential, for all thirty six titular species. Additionally, results of population analyses are presented together with orbital contour plots; combined with the success of the electrostatic model, the expectation that these complexes are all physically bound is confirmed

    Theoretical study of finite temperature spectroscopy in van der Waals clusters. I. Probing phase changes in CaAr_n

    Full text link
    The photoabsorption spectra of calcium-doped argon clusters CaAr_n are investigated at thermal equilibrium using a variety of theoretical and numerical tools. The influence of temperature on the absorption spectra is estimated using the quantum superposition method for a variety of cluster sizes in the range 6<=n<=146. At the harmonic level of approximation, the absorption intensity is calculated through an extension of the Gaussian theory by Wadi and Pollak [J. Chem. Phys. vol 110, 11890 (1999)]. This theory is tested on simple, few-atom systems in both the classical and quantum regimes for which highly accurate Monte Carlo data can be obtained. By incorporating quantum anharmonic corrections to the partition functions and respective weights of the isomers, we show that the superposition method can correctly describe the finite-temperature spectroscopic properties of CaAr_n systems. The use of the absorption spectrum as a possible probe of isomerization or phase changes in the argon cluster is discussed at the light of finite-size effects.Comment: 17 pages, 9 figure

    Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal

    Full text link
    Here we demonstrate that water-infiltrated nanoporous glass electrically switches an oxide semiconductor from an insulator to metal. We fabricated the field effect transistor structure on an oxide semiconductor, SrTiO3, using 100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate insulator. For positive gate voltage, electron accumulation, water electrolysis and electrochemical reduction occur successively on the SrTiO3 surface at room temperature, leading to the formation of a thin (~3 nm) metal layer with an extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits exotic thermoelectric behaviour.Comment: 21 pages, 12 figure

    Supersymmetric Rotating Black Holes and Causality Violation

    Get PDF
    The geodesics of the rotating extreme black hole in five spacetime dimensions found by Breckenridge, Myers, Peet and Vafa are Liouville integrable and may be integrated by additively separating the Hamilton-Jacobi equation. This allows us to obtain the St\"ackel-Killing tensor. We use these facts to give the maximal analytic extension of the spacetime and discuss some aspects of its causal structure. In particular, we exhibit a `repulson'-like behaviour occuring when there are naked closed timelike curves. In this case we find that the spacetime is geodesically complete (with respect to causal geodesics) and free of singularities. When a partial Cauchy surface exists, we show, by solving the Klein-Gordon equation, that the absorption cross-section for massless waves at small frequencies is given by the area of the hole. At high frequencies a dependence on the angular quantum numbers of the wave develops. We comment on some aspects of `inertial time travel' and argue that such time machines cannot be constructed by spinning up a black hole with no naked closed timelike curves.Comment: 36 pages,LaTeX,8 figures;added 1 reference and a few comments; formula (2.6) corrected; a few changes to section
    • …
    corecore