27 research outputs found

    Genetics and functional genomics of legume nodulation

    Get PDF
    http://www.soyroothair.org/publications.phpGram-negative soil bacteria (rhizobia) within the Rhizobiaceae phylogenetic family (a-proteobacteria) have the unique ability to infect and establish a nitrogen-fixing symbiosis on the roots of leguminous plants. This symbiosis is of agronomic importance, reducing the need for nitrogen fertilizer for agriculturally important plants (e.g. soybean and alfalfa). The establishment of the symbiosis involves a complex interplay between host and symbiont, resulting in the formation of a novel organ, the nodule, which the bacteria colonize as intracellular symbionts. This review focuses on the most recent discoveries relating to how this symbiosis is established. Two general developments have contributed to the recent explosion of research progress in this area: first, the adoption of two genetic model legumes, Medicago truncatula and Lotus japonicus, and second, the application of modern methods in functional genomics (e.g. transcriptomic, proteomic and metabolomic analyses).Ongoing related research in the Stacey laboratory is funded by grants from the US Department of Energy (DE-FG02-02ER15309), the National Science Foundation (NSF) (DBI-0421620), and the National Research Initiative (NRI) of the US Department of Agriculture (USDA) Cooperative State Research, Education and Extension Service (2005-35319-16192 and 2004-35604-14708)

    Constructing proteome and metabolome maps for genetic improvement of energy-related traits in soybean [abstract]

    Get PDF
    Only abstract of poster available.Track V: BiomassAlthough the genetic blueprint of soybean is represented by the genome, its phenotype is a product of that blueprint manifested as the production of proteins and metabolites influencing growth characteristics, stress responses, seed composition, and yield. We are using various tools of genomics and molecular breeding with an aim towards development of value-added soybeans that will help United States farmers to maintain their competitiveness and expand utilization of soybean crops (e.g. functional foods, industrial uses, biodiesel, etc). Profiling soybean gene products will lay the foundation for a systems biology approach to key processes such as seed development, which will lead to the genetic improvement of yield and seed composition. Being one of the major bio-energy crops, building a comprehensive map of proteins and metabolites for soybean will help make connections between regulatory or metabolic pathways not previously characterized. Another major benefit from these studies is the discovery of energy related traits including plant productivity and seed compositional traits for the genetic improvement of soybean. It is well known that environmental cues influence developmental phenotypes in plants. Different biotic stresses such as fungal diseases and abiotic stresses, such as drought and flooding, also elicit phenotypic responses from the genome. Thus, by studying the gene products, a direct correlation between response and specific peptides/metabolites can be made. This will lead to crop improvement either through breeding or transgenic efforts. Major objectives of this study are: a) to identify key soybean seed, leaf, and root proteins involved in development and biotic and abiotic stress responses; b) to establish a comprehensive set of chemical standards for soybean metabolites moving toward construction of a metabolome map with a focus on seed and drought effects on seed development and, c) to compile a database linking proteomic and metabolite information and associate this information to value-added soybean traits and markers for assisted breeding. We are utilizing GC/MS, LC/MS, and NMR approaches to identify key molecules for further characterization

    Development and assessment of scoring functions for protein identification using PMF data

    Get PDF
    PMF is one of the major methods for protein identification using the MS technology. It is faster and cheaper than MS/MS. Although PMF does not differentiate trypsin-digested peptides of identical mass, which makes it less informative than MS/MS, current computational methods for PMF have the potential to improve its detection accuracy by better use of the information content in PMF spectra. We developed a number of new probability-based scoring functions for PMF protein identification based on the MOWSE algorithm. We considered a detailed distribution of matching masses in a protein database and peak intensity, as well as the likelihood of peptide matches to be close to each other in a protein sequence. Our computational methods are assessed and compared with other methods using PMF data of 52 gel spots of known protein standards. The comparison shows that our new scoring schemes have higher or comparable accuracies for protein identification in comparison to the existing methods. Our software is freely available upon request. The scoring functions can be easily incorporated into other proteomics software packages

    Images of Italian Mathematics in France from Risorgimento to Fascism

    No full text
    The contributions in this proceedings volume offer a new perspective on the mathematical ties between France and Italy, and reveal how mathematical developments in these two countries affected one another. The focus is above all on the Peninsula’s influence on French mathematicians, counterbalancing the historically predominant perception that French mathematics was a model for Italian mathematicians. In the process, the book details a subtle network of relations between the two countries, where mathematical exchanges fit into the changing and evolving framework of Italian political and academic structures. It reconsiders the issue of nationalities in all of its complexity, an aspect often neglected in research on the history of mathematics. The works in this volume are selected contributions from a conference held in Lille and Lens (France) in November 2013 on Images of Italian Mathematics in France from Risorgimento to Fascism. The authors include respected historians of mathematics, philosophers of science, historians, and specialists for Italy and intellectual relations, ensuring the book will be of great interest to their peers
    corecore