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Development and assessment of scoring
functions for protein identification using
PMF data

PMF is one of the major methods for protein identification using the MS technology. It is
faster and cheaper than MS/MS. Although PMF does not differentiate trypsin-digested
peptides of identical mass, which makes it less informative than MS/MS, current compu-
tational methods for PMF have the potential to improve its detection accuracy by better use
of the information content in PMF spectra. We developed a number of new probability-
based scoring functions for PMF protein identification based on the MOWSE algorithm.
We considered a detailed distribution of matching masses in a protein database and peak
intensity, as well as the likelihood of peptide matches to be close to each other in a protein
sequence. Our computational methods are assessed and compared with other methods
using PMF data of 52 gel spots of known protein standards. The comparison shows that our
new scoring schemes have higher or comparable accuracies for protein identification in
comparison to the existing methods. Our software is freely available upon request. The
scoring functions can be easily incorporated into other proteomics software packages.
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1 Introduction

The general approach for MS protein identification is by
matching the features derived from the mass spectra of a
protein sample against a protein sequence database that
contains the sequences of the proteins in the sample [1]. It
involves protein digestion using an enzyme (for example,
trypsin, glu-C, etc.) and chromatographic separation, fol-
lowed by PMF [2] or MS/MS analysis [3]. PMF protein iden-

tification compares the masses of peptides derived from the
experimental spectral peaks with each of the possible pep-
tides generated by computationally digesting proteins in the
sequence database. The MS/MS method further breaks each
digested peptide into smaller fragments, whose spectra pro-
vide effective signatures of individual amino acids in the
peptide for protein identification. While the MS/MS method
is more accurate in defining peptides, it is much more
expensive and time-consuming than PMF. PMF provides an
economic method for protein identification, and it can serve
as an effective filter for selecting some proteins on which to
conduct MS/MS analysis. Currently, PMF using MALDI-
TOF MS is still widely used.

The basic idea for protein identification from PMF spec-
tral peaks is illustrated in Fig. 1. At the experimental side, a
protein is digested into peptide fragments using enzymes
that recognize specific sites. The most common enzyme is
trypsin, which cleaves very specifically at R2X and K2X
bonds except when X = P (the rule on X = P is sometimes not
used as a hard constraint). A PMF experiment provides the
spectra of the mass-to-charge ratios (m/z) for the digested

* Current address: Department of Microbiology, Miami University,
Oxford, OH 45056, USA

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/62758641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Electrophoresis 2007, 28, 864–870 Proteomics and 2-DE 865

Figure 1. PMF protein identification. The protein in the gel sam-
ple is digested into peptides, whose mass-to-charge ratios are
shown in the PMF spectra. The PMF spectra are used to compare
with simulated spectra of each protein in a database for protein
identification.

peptides. The peak intensity relates to the abundance of the
peptide, but the relationship is complicated [4]. At the com-
putational side, a database is prepared for all possible protein
sequences derived from the genomic sequence of the organ-
ism in the gel sample or all the sequences collected in a
comprehensive protein database such as UniProtKB/Swiss-
Prot [5]. Each protein in the database is then computationally
digested into peptide sequences according to the type of
digestion. The common PMF protein identification is carried
out through two steps: (i) the experimental PMF spectral
peaks are compared with simulated ones from each of the
possible peptides generated by computationally digested
proteins in the sequence database, and (ii) the proteins in the
sequence database with many peptide matches are con-
sidered as the top candidates for the proteins in the experi-
mental sample.

Several computational tools have been developed for
PMF protein identification. MOWSE [6] was an earlier soft-
ware package for PMF protein identification, and EMOWSE
(http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/
emowse.html) is the latest implementation of the MOWSE
algorithm. MS-Fit in the ProteinProspector package (http://
prospector.ucsf.edu/) [7] uses a variant of the MOWSE scor-
ing scheme. It incorporates several new features, including
constraints on the minimum number of peptides to be
matched for a possible hit, the number of missed cleavages,
and the target protein’s molecular weight range. MASCOT
(Matrix Science Inc., http://www.matrixscience.com/) [8] is
an extension of the MOWSE algorithm. It incorporates the
same scoring scheme, but provides a probability-based score.
ProFound (http://prowl.rockefeller.edu/) [9] uses the Baye-
sian probability theory and an Expert System for protein
identification, with a generalized probability score. OLAV-
PMF [10] applies a probabilistic model to estimate the ratio of
two likelihoods between a list of experimental peptide mas-

ses and the corresponding list of expected ones. Probity [11]
analytically calculates the risk of random matching between
experimental masses and theoretical masses of a protein in a
search database. ChemApplex considered peak intensity and
the accuracy of the match between the experimental mass
and the theoretical mass in the scoring function [12]. Ossi-
pova et al. [13] developed a method to optimize the parame-
ters for PMF protein identification in database search.

There are several limitations for the current computa-
tional methods of PMF protein identification, which may
result in under-utilization of the available information con-
tent in PMF spectra for protein identification. A general
issue is the scoring function, which assesses the match be-
tween an experimental spectrum and a simulated spectrum
in a protein database. Current scoring functions use simple
statistics, which typically do not consider peak intensity
information, distribution model of matching m/z in a data-
base, or the distribution of m/z matches along a protein
sequence. When multiple proteins in the database can fit the
PMF spectra, some of the existing scoring functions may not
filter out false-positive results effectively. If these limitations
can be addressed effectively, many gel spots can be identified
confidently without using MS/MS experiments for further
validation.

In this paper, we present a number of new scoring func-
tions and compare them with MOWSE. The methods
described in this paper have been implemented in a software
package, which is available upon request.

2 Materials and methods

2.1 Database search

The database used for protein identification in this paper is
sprot45 from UniProtKB/Swiss-Prot (last updated in January
2005), together with the 40 proteins from soybean (generated
after January 2005) that we have identified but not included
in the database. The database has 163 275 proteins in total,
including eight fields for each entry: accession number, pep-
tide number, peptide sequences, peptide masses, peptide
lengths, protein sequence, protein name, and protein mo-
lecular weight. The molecular weight of a peptide of N resi-
dues is calculated as

XN

i¼1

residue massi þ 18:015 (1)

Equation (1) takes into account an amino-terminal hydrogen
and a carboxy-terminal hydroxyl group, which sum up to
18.015.

In this study, we only consider complete trypsin diges-
tion of a protein and peptide without including any missed
cleavage. In addition, we assume that the charge state of all
the peptides is 1 and no post-translational modification exists
in any peptide. We use only monoisotopic peaks.
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2.2 Scoring schema

Here we first describe briefly the widely used MOWSE scor-
ing function. Then we will illustrate the four novel scoring
schemes (score schemes 2–5 in the following) that we devel-
oped.

2.2.1 MOWSE scoring function

MOWSE [6] is one of the earliest scoring schemes in protein
identification using PMF data, which is still widely used. The
scheme is based on the number of possible matches within a
target protein and the frequency of occurrence of the molec-
ular weight of each peptide. A frequency table, as indicated
in Fig. 2, is constructed for all peptide entries in the database.
Each column in the frequency table represents the MWof the
protein and is divided into 10 kDa intervals. Rows represent
the MW of peptides and are divided into 100 Da intervals.
Proteins found in the database are entered into the table
based on their molecular weights and the weights of peptides
found in each protein. Each cell thus comprises the number
of occurrences of peptides within a specific molecular weight
range in a protein of certain intact molecular weight. The
frequency table is constructed by normalizing the value in
each cell with the largest number found in each column.
Specifically, the frequency fij in cell-(i,j) is fij = Nij/Njmax,
where Njmax = max{N1j, N2j, . . .} is the largest number in
column j. For protein identification, each protein in the tar-
get database is scored by multiplying the frequency value of
the matched peptide, whose molecular weight differs from
the experimental spectral peak within a cutoff value (typically
1 Da). This product is scaled with the protein molecular
weight and then inverted. The final score Score = 50 000/
(pn6wp), where pn is the product of matched distribution
scores and wp the “hit” protein molecular weight in the data-

base [4]. pn /
Y

i¼RðlÞ; l2H

fij, where R(l) represents the row

number of the table for the lth fragment of the mass spectra,
and H is the set of the matched fragments of the mass spec-
tra with the protein.

2.2.2 Normal distribution-based scoring function

(NDSF)

To make use of the peak intensity and the quantitative dif-
ference between the experimental mass values of selected
peaks and matched mass values in the protein database, we
developed the following energy function based on Eq. (1) in
ref. [9]:

Score ¼
X

i

Inti �
1ffiffiffiffiffiffi

2p
p

si
exp � mti �meið Þ2

2s2
i

" #" #
(2)

In Eq. (2), mti is the mass of theoretical peptide in the data-
base, mei is the mass of matched experimental peak, Inti is
the corresponding intensity value for the experimental

Figure 2. MOWSE occurrence table of peptides based on the
database. Each column in the table represents the molecular
weight of the protein and is divided into 10 kDa intervals. Rows
represent the molecular weights of peptides and are divided into
100 Da intervals. Nij in cell i,j is the total number of occurrence of
digested peptides for all the proteins in the database with MW
ranging from (j 2 1)610 to j610 kDa.

peptide, and si ¼ ð1=3Þtolerance�mei(typically tolerance
= 100 ppm = 0.01%). This form of the scoring scheme
assumes that all mass matches between theoretical peptides
and experimental peptide follow a normal distribution with
the mass of experimental value as mean.

2.2.3 Neighbor-MOWSE scoring function (NMOWSE)

When different MS peaks match multiple peptides in a pro-
tein, the distribution of these peptides on the protein reflects
the likelihood for the protein to represent the MS spectra. For
example, if these peptides are contiguous on a protein
sequence, it represents a better chance to be the true protein
for the spectra than the case if they are distributed randomly
on the sequence. We modified the MOWSE scoring scheme
to reflect such a statistical relationship. The frequency table
is constructed similarly as that of MOWSE. The difference is
that the NMOWSE algorithm adds weight to neighboring
matching peptides. The weight is obtained from the fre-
quency table, as proportional to the sum of the frequencies of
both matching neighbors, i.e.,

factori; iþ1 ¼ l� ðfactori þ factoriþ1Þ (3)

where l is a parameter and factori is the value (i.e., fkj where
k ¼ RðiÞ) in the frequency table for the ith peptide of the
experimental protein. Then the factors for all the contiguous
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matches from PMF spectra to a protein sequence are multi-
plied, i.e.,

Weight ¼
Y

iþ1¼j

factori;j (4)

The “Weight” will be multiplied to the regular MOWSE score
as the final score.

2.2.4 Probability-based scoring function (PBSF)

To handle the statistical properties in PMF protein identifi-
cation more systematically, we developed a new scoring
scheme based on the MOWSE occurrence table. In this case,
based on Fig. 2, when comparing a mass distribution of
peptides (n fragment molecular weights in the spectra) with
the database entry of molecular weights (protein k in the
column j), R(l) represents the row number of the table for the
lth fragment of the mass spectra. When the difference in two
peptide weights is within a tolerance value, it is a hit or
match. Otherwise it is nonmatching. The probability for a
match between a mass distribution of peptides and a protein
k in the database is computed via

PrðPkÞ ¼
Y

i¼RðlÞ;l2Hk

1� 1�mij

Mj

� �nk
ij

" #
(5)

where Pr(Pk) represents a probability or ratio for protein k
matching with the fragment peptides of the experimental
mass spectra. Hk is the set of the matched fragments of the
mass spectra with protein k, and nk

ij is the number of pep-
tides in cell-(i,j) of protein k. Let Mj be the total number of
proteins in the j column of Fig. 2 among the databases. mij

represents the average number of occurrences of peptides in
cell i,j for one protein of the database, i.e., mij = Nij/Mj, and Mj

is the total number of occurrences of peptides in the jth col-

umn of the database, i.e., Mj ¼
Xnr

i¼1
mij, where nr is the

total number of rows in the table. Clearly, mij/Mj is the fre-
quency in the cell i,j for the column j. Note that such a fre-
quency is different from fij of MOWSE.

In mass spectra, high-abundance peaks are more likely to
be the peaks representing true peptides, whereas low-abun-
dance peaks are more likely to be noisy. To account for the
peak intensity effect we modify Eq. (5) as

PrðPkÞ ¼
Y

i¼RðlÞ;l2Hk

1� 1� mij

Mij

� �nk
ij

" #
ð1� IlÞ

" #
(6)

where Il is the normalized intensity ([0,1]) of the lth spec-
trum, i.e.,

Il ¼
1

1þ e�aðÎl��IÞ
(7)

In Eq. (7), Îl is the original intensity, �I is the average intensity
for all selected peaks, and a is a constant. To achieve a good
prevision in computing, we adopt 2log Pr(Pk) as the score
function for protein identification.

2.2.5 Modified probability-based scoring function

(MPBSF)

We further developed another scoring scheme by integrating
the information for the neighboring matching peptides into
an MPBSF. The score utilizes the average distance of
matched peptides and is defined as

ADMP ¼

Pnm�1

i¼1
Disi;iþ1

ns=np
(8)

where the numerator represents the sum of the distances
between two adjacent matching peptides, while the denomi-
nator represents the total number of possible digested seg-
ments in the protein divided by the number of matching
peptides. Specifically, nm, ns, np are the number of the
matching peptides in the spectra, the number of the digested
segments, and the number of the matching peptides in the
protein, respectively. The final MPBSF score is calculated as
2log Pr(Pk)2log(ADMP).

2.3 Samples

In order to provide benchmark data for the computational
studies, we used seven protein standards, which yielded 12
gel spots. In-gel trypsin digests were performed for the Coo-
massie-stained 2-D gel plugs. The digests were dried on a
centrifugal evaporator, reconstituted, and desalted on C18
ZipTips. The desalted digests were analyzed by MALDI-TOF
MS with CHCA in positive ion delayed extraction reflector
mode. The sample spots were washed on target with
diammonium citrate to reduce the interference from matrix
ion clusters, and reanalyzed by MALDI-TOF MS in positive
ion delayed extraction reflector mode. The 12 spots on 2-D
gel and their corresponding proteins and isoforms are shown
in Table 1.

We also used 40 proteins (600 mg) extracted from soybean
(cv Williams 82) and root hair, which were separated by 2-DE
(24 cm IPG strip, linear pH 4–7), according to the method

Table 1. Gel spots of protein standards

Gel spot Protein name Species Swiss-
Prot ID

Plug1 Glucoamylases Aspergillus niger P04064
Plug2 Trypsin (trypsinogen) Bovine P00760
Plug3 Lentil lectin Lens culinaris (Lentil) P02870
Plug4 Myoglobin Horse P68082
Plug5 b-Lactoglobulin Bovine P02754
Plug6 Carbonic anhydrase I Human P00915
Plug7 Trypsin inhibitor Soybean P01070
Plug8 Trypsin inhibitor Soybean P01070
Plug9 b-Lactoglobulin Bovine P02754
Plug10 b-Lactoglobulin Bovine P02754
Plug11 Myoglobin Horse P68082
Plug12 Trypsin (trypsinogen) Bovine P00760
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described in ref. [14]. Four replicates were performed and gel
pictures were analyzed using Phoretix (nonlinear dynamics,
v2005). Spots identified in at least three out of the four repli-
cates were excised using a spot picker and their molecular
weights and pIs were determined. The gel plugs were then
digested using sequencing-grade modified trypsin (Pro-
mega, Madison, Wisconsin USA). Tryptic peptides were lyo-
philized, reconstituted in 10 mL of 700:290:10 by volume
ACN/water/formic acid (HCOOH w/v in water � 88%) and
0.5 mL of the solution was mixed with the same volume of
a-cyano-4-hydroxycinnamic acid (Fluka MS-grade, Sigma–
Aldrich, St. Louis, USA) solution (5 mg/mL in
500:380:20:100 ACN/water/10% TFA/100 mM ammonium
dihydrogen phosphate). The sample/matrix (0.3 mL) mix was
deposited on a stainless-steel plate (ABI01-192-6-AB). The
tryptic peptides were analyzed on an Applied Biosystems Inc.
4700 MALDI TOF/TOF MS in positive ion delayed extraction
reflector mode with a 355 nm (200 Hz) laser. The instrument
was calibrated with ABI peptide standards (4700 Mass stand-
ards kit, 4333604). Spectra were analyzed using the GPS
Explorer software (v. 3.0) (Applied Biosystems) and the
Matrix Science’s MASCOT search engine (www.matrix
science.com) against the NCBI Viridiplantae protein data-
base. Search parameters included, a maximum of 150 ions
per MS spectrum with an S/N.20, a mass error of 0.1 Da for
the monoisotopic precursor ions, a maximum of one allowed
miscleavage by trypsin, an exclusion of peptide masses
corresponding to the autolysis of the trypsin, carbamido-
methylation of cysteines and methionine oxidation, respec-
tively as fixed and variable modifications.

We found 40 proteins that were identified confidently
with the MS/MS mode, and we used their corresponding MS
fingerprinting data as the inputs for our tests of scoring
schemes. We assume that a test protein identification is cor-
rect if our search using the fingerprinting data matches the
protein identified from the MS/MS data. The 40 spots on 2-D
gel and their corresponding proteins and isoforms are shown
in Supplementary Table 1.

3 Results

3.1 Score schema comparison

We compared the performance of our newly developed
schemes with the MOWSE score function, using the same
experimental datasets as described in Section 2.3 (12 stand-
ards together with 40 soybean proteins). For each protein
identification, we manually selected a set of peaks from a
spectrum provided by the Proteomics Center, University of
Missouri-Columbia. Matched peptides should cover at least
25% of a protein sequence in order to be listed as a candidate
of correct result. Figure 3 shows the comparison results of
the five scoring functions (NDSF, MOWSE, NMOWSE,
PBSF, and MPBSF) in terms of ranking correct proteins
among top hits. It indicates that PBSF and MPBSF per

Figure 3. Scoring function comparison, numbers in which the
expected protein ranks top 1 to top 500 versus top ranking field.

formed significantly better than the other three methods
(especially in the “#top 1” category). The performance be-
tween PBSF and MPBSF is similar, while MPBSF slightly
outperforms PBSF.

To provide a more robust comparison, we randomly sam-
pled selected peaks for each gel spot. For a fixed percentage of
selected peaks, we randomly picked peaks ten times, and used
each set of generated spectra for protein identification with the
five scoring schemes. Figure 4 compares different methods,
where the percentages for the expected proteins to rank top 1
or top 10 among the 52 sets of PMF spectra are plotted against
the percentage of selected peaks in the generated spectra. The
result is consistent with Fig. 3. The figure clearly indicates that
PBSF and MPBSF are significantly better than the other three
methods, while MPBSF is slightly better than PBSF. The
overall performance of the algorithms can be sorted as
MPBSF.PBSF.NMOWSE.MOWSE.NDSF. It is worth
mentioning that NDSF performed worse than MOWSE, al-
though NDSF considers the match more quantitatively using
the difference between the theoretical mass in the database
and the mass measured from the spectrum, as well as the peak
intensity information. This may be due to the fact that the
NDSF scheme is too sensitive to noise, and as a result does not
perform well. Considering the hit distribution on a protein
systematically improves the protein identification accuracy, as
NMOWSE outperformed MOWSE and MPBSF outperformed
PBSF. However, such an improvement is less than the one
from the rigorous statistical model in PBSF.

We have developed a capacity to handle missed cleavages.
We tested the missed cleavage feature using the dataset of
52 gel spots. We found that the result was similar to the one
without the missed cleavage feature. We also tested our
dataset on MASCOT, and the results between allowing and
ignoring missed cleavage were also quite similar. This sug-
gests that our dataset may contain few missed cleavages.
Nevertheless, the capacity to handle missed cleavages,
implemented in our package, is useful in general.
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Figure 4. Percentages in which the expected protein ranks top 1
(a) and top 10 (b) versus percentage of selected peaks from PMF
spectra.

3.2 Comparison with MASCOT and

ProteinProspector

We compared our software with two widely used software
packages, i.e., MASCOT and ProteinProspector. The perfor-
mance of our software is similar to or slightly worse than
MASCOT. As the online version of MASCOT or Protein-
Prospector does not allow a user to add a search database,
we limited our comparison on the 12 known spots, whose
proteins can be found in a search database (UniProtKB/
Swiss-Prot) of MASCOT or ProteinProspector. Among the
12 testing data points, our software ranked the correct pro-
tein the 1st for four cases, in top 15 for six cases; while
MASCOT ranked the correct protein the 1st for five cases
and in top 15 for seven cases. This is probably due to special

treatment and features beyond the MOWSE score that
MASCOT uses. For example, MASCOT uses a confidence
assessment on top of the scoring function. Our software
performs better than ProteinProspector. When we set a
threshold for the molecular weight, the result of MPBSF did
not change much, which indicated that the performance of
MPBSF is basically invariant against the molecular weight
of a protein. This is not the case in ProteinProspector.
Without limitation of protein’s molecular weight, Protein-
Prospector could find none ranked top in 50 for the 12 pro-
teins; with the limitation setting to 1000–100 000 Da, Pro-
teinProspector could find 1 ranked the 1st, 3 ranked the
2nd, and 1 ranked the 37th. The testing result is listed in
Table 2.

4 Discussion

Although MS/MS provides more information for protein
identification, PMF will still be useful for fast and inexpen-
sive protein identification. One of the problems is that by
applying PMF in protein identification, the multi-to-one
relationship between gels and protein still exists. This is
mainly a result of the information content for protein iden-
tification in PMF being much less than MS/MS. Never-
theless, the information content in PMF spectra may not be
fully utilized by current computational methods for protein
identification. The work described in this paper represents
an effort to explore more effective scoring schemes by better
using the information content in PMF spectra to improve
protein identification accuracy. The scoring schemes devel-
oped (especially PBSF and MPBSF) are novel to the best of
our knowledge. Our results using experimental PMF spectra
demonstrate that the new scoring schemes can yield higher
accuracy in protein identification. The new scoring schemes
are generally applicable to any PMF protein identification
software.

Table 2. Comparison for ranking of correct hit between our soft-
ware and MASCOT/ProteinProspector

Spots/
ranks

MPBSF MASCOT ProteinProspector
without MW
limitation

ProteinProspector
with MW
limitation

Spot1 1 .20 .50 2
Spot2 8 .20 .50 .20
Spot3 .20 .20 .50 .20
Spot4 1 1 .50 1
Spot5 .20 8 .50 .20
Spot6 1 1 .50 2
Spot7 .20 2 .50 .20
Spot8 .20 .20 .50 .20
Spot9 .20 1 .50 .20
Spot10 .20 1 .50 .20
Spot11 1 1 .50 2
Spot12 13 .20 .50 37
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The better performance of our new scoring schemes is
mainly due to more rigorous formulations and consideration
of peptide hit distribution on a protein. Although MOWSE
applied the propensity of molecular weights for proteins and
peptides in protein identification, it does not have a compre-
hensive consideration for the underlying statistical distribu-
tion. In contrast, PBSF builds on the MOWSE table, but has
a rigorous treatment for the statistical distribution in match-
ing PMF spectra to the proteins in a search database. The test
result using the experimental PMF spectra showed that
major improvement in protein identification accuracy came
from PBSF, or the rigorous statistical treatment, as PBSF
alone outperformed MOWSE, NMOWSE, and NDSF by a
large margin. To a less extent, the improvement came from
the consideration of peptide hit distribution on a protein, as
MPBSF slightly outperformed PBSF. The peptide hit dis-
tribution represents a useful, independent source of infor-
mation for protein identification, and it has not been
explored by any other PMF identification. By combining the
PBSF statistical model and the peptide hit distribution
information on a protein, MPBSF achieved the best perfor-
mance among all the scoring schemes. To test the effect of
adding peak intensity in scoring function, we removed the
last item (1 2 Il) in Eq. (6). We compared the computational
result with MPBSF and found the result was not as good as
the original PBSF but still consistently better than MOWSE,
NMOWSE and NDSF (data not shown). This indicates that
the peak intensity helps protein identification, but it is not
the main source of accuracy improvement.

There are some limitations for the validations of our
methods. In particular, the number of test cases is limited.
Furthermore, although the scoring functions shown in this
paper incorporated some factors for protein identification,
such as missed cleavage and protein molecular weight
range setting, other factors still need to be incorporated, in
particular, post-translational modification to handle mass
increments, neutral losses, or diagnostic fragment ions in
peptide mass spectra [15, 16]. In addition, we will follow
some developed strategies to handle the issue that most of
the gel spots are mixtures of multiple proteins [17–19]. We
are incorporating these factors into our software package
and will test it using more PMF data. In addition, we are
exploring more systematic handling of the statistics for the
scoring schemes, in particular, using the Dirichlet distribu-
tion [20] for the treatment of the peptide hit distribution on
a protein and combining this distribution with the PBSF
statistical model.
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