72 research outputs found

    The Circadian Clock Gene BMAL1 Coordinates Intestinal Regeneration

    Get PDF
    Background & Aims The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied. Methods: We tested the timing of regeneration in the mouse intestine during the gastrointestinal syndrome. The role of the circadian clock was tested genetically using the BMAL1 loss of function mouse mutant in vivo, and in vitro using intestinal organoid culture. Results: The proliferation of the intestinal epithelium follows a 24-hour rhythm during the gastrointestinal syndrome. The circadian clock runs in the intestinal epithelium during this pathologic state, and the loss of the core clock gene, BMAL1, disrupts both the circadian clock and rhythmic proliferation. Circadian activity in the intestine involves a rhythmic production of inflammatory cytokines and subsequent rhythmic activation of the JNK stress response pathway. Conclusions: Our results show that a circadian rhythm in inflammation and regeneration occurs during the gastrointestinal syndrome. The study and treatment of radiation-induced illnesses, and other gastrointestinal illnesses, should consider 24-hour timing in physiology and pathology

    β[beta]-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis

    Get PDF
    Rosettes are widely used in epithelial morphogenesis during embryonic development and organogenesis. However, their role in postnatal development and adult tissue maintenance remains largely unknown. Here, we show zona glomerulosa cells in the adult adrenal cortex organize into rosettes through adherens junction-mediated constriction, and that rosette formation underlies the maturation of adrenal glomerular structure postnatally. Using genetic mouse models, we show loss of beta-catenin results in disrupted adherens junctions, reduced rosette number, and dysmorphic glomeruli, whereas beta-catenin stabilization leads to increased adherens junction abundance, more rosettes, and glomerular expansion. Furthermore, we uncover numerous known regulators of epithelial morphogenesis enriched in beta-catenin-stabilized adrenals. Among these genes, we show Fgfr2 is required for adrenal rosette formation by regulating adherens junction abundance and aggregation. Together, our data provide an example of rosette-mediated postnatal tissue morphogenesis and a framework for studying the role of rosettes in adult zona glomerulosa tissue maintenance and function

    Generation of glucocorticoid-producing cells derived from human pluripotent stem cells.

    Get PDF
    Adrenal insufficiency is a life-threatening condition resulting from the inability to produce adrenal hormones in a dose- and time-dependent manner. Establishing a cell-based therapy would provide a physiologically responsive approach for the treatment of this condition. We report the generation of large numbers of human-induced steroidogenic cells (hiSCs) from human pluripotent stem cells (hPSCs). Directed differentiation of hPSCs into hiSCs recapitulates the initial stages of human adrenal development. Following expression of steroidogenic factor 1, activation of protein kinase A signaling drives a steroidogenic gene expression profile most comparable to human fetal adrenal cells, and leads to dynamic secretion of steroid hormones, in vitro. Moreover, expression of the adrenocorticotrophic hormone (ACTH) receptor/co-receptor (MC2R/MRAP) results in dose-dependent ACTH responsiveness. This protocol recapitulates adrenal insufficiency resulting from loss-of-function mutations in AAAS, which cause the enigmatic triple A syndrome. Our differentiation protocol generates sufficient numbers of hiSCs for cell-based therapy and offers a platform to study disorders causing adrenal insufficiency

    mTORC1 in the Paneth cell niche couples intestinal stem cell function to calorie intake

    Get PDF
    How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cells—an ectoenzyme that produces the paracrine factor cyclic ADP ribose—mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.National Institutes of Health (U.S.) (CA103866)National Institutes of Health (U.S.) (CA129105)David H. Koch Institute for Integrative Cancer Research at MIT (Initiator Award)Ellison Medical FoundationNational Cancer Institute (U.S.) (NCI (T32CA09216) fellowship support)Academy of FinlandFoundations’ Postdoc PoolNational Institutes of Health (U.S.) (NIH (1F32AG032833-01A1))Jane Coffin Childs Memorial Fund for Medical Researc

    Guidelines for the Development of Comprehensive Care Centers for Congenital Adrenal Hyperplasia: Guidance from the CARES Foundation Initiative

    Get PDF
    Patients with rare and complex diseases such as congenital adrenal hyperplasia (CAH) often receive fragmented and inadequate care unless efforts are coordinated among providers. Translating the concepts of the medical home and comprehensive health care for individuals with CAH offers many benefits for the affected individuals and their families. This manuscript represents the recommendations of a 1.5 day meeting held in September 2009 to discuss the ideal goals for comprehensive care centers for newborns, infants, children, adolescents, and adults with CAH. Participants included pediatric endocrinologists, internal medicine and reproductive endocrinologists, pediatric urologists, pediatric surgeons, psychologists, and pediatric endocrine nurse educators. One unique aspect of this meeting was the active participation of individuals personally affected by CAH as patients or parents of patients. Representatives of Health Research and Services Administration (HRSA), New York-Mid-Atlantic Consortium for Genetics and Newborn Screening Services (NYMAC), and National Newborn Screening and Genetics Resource Center (NNSGRC) also participated. Thus, this document should serve as a “roadmap” for the development phases of comprehensive care centers (CCC) for individuals and families affected by CAH

    Guidelines for the Development of Comprehensive Care Centers for Congenital Adrenal Hyperplasia: Guidance from the CARES Foundation Initiative

    Get PDF
    Patients with rare and complex diseases such as congenital adrenal hyperplasia (CAH) often receive fragmented and inadequate care unless efforts are coordinated among providers. Translating the concepts of the medical home and comprehensive health care for individuals with CAH offers many benefits for the affected individuals and their families. This manuscript represents the recommendations of a 1.5 day meeting held in September 2009 to discuss the ideal goals for comprehensive care centers for newborns, infants, children, adolescents, and adults with CAH. Participants included pediatric endocrinologists, internal medicine and reproductive endocrinologists, pediatric urologists, pediatric surgeons, psychologists, and pediatric endocrine nurse educators. One unique aspect of this meeting was the active participation of individuals personally affected by CAH as patients or parents of patients. Representatives of Health Research and Services Administration (HRSA), New York-Mid-Atlantic Consortium for Genetics and Newborn Screening Services (NYMAC), and National Newborn Screening and Genetics Resource Center (NNSGRC) also participated. Thus, this document should serve as a “roadmap” for the development phases of comprehensive care centers (CCC) for individuals and families affected by CAH

    100th anniversary of the discovery of the human adrenal fetal zone by Stella Starkel and Lesław Węgrzynowski: how far have we come?

    Full text link

    Guidelines for the Development of Comprehensive Care Centers for Congenital Adrenal Hyperplasia: Guidance from the CARES Foundation Initiative

    Get PDF
    Abstract Patients with rare and complex diseases such as congenital adrenal hyperplasia (CAH) often receive fragmented and inadequate care unless efforts are coordinated among providers. Translating the concepts of the medical home and comprehensive health care for individuals with CAH offers many benefits for the affected individuals and their families. This manuscript represents the recommendations of a 1.5 day meeting held in September 2009 to discuss the ideal goals for comprehensive care centers for newborns, infants, children, adolescents, and adults with CAH. Participants included pediatric endocrinologists, internal medicine and reproductive endocrinologists, pediatric urologists, pediatric surgeons, psychologists, and pediatric endocrine nurse educators. One unique aspect of this meeting was the active participation of individuals personally affected by CAH as patients or parents of patients. Representatives of Health Research and Services Administration (HRSA), New York-Mid-Atlantic Consortium for Genetics and Newborn Screening Services (NYMAC), and National Newborn Screening and Genetics Resource Center (NNSGRC) also participated. Thus, this document should serve as a "roadmap" for the development phases of comprehensive care centers (CCC) for individuals and families affected by CAH
    corecore