35 research outputs found

    Effects of repeated pup exposure on behavioral, neural, and adrenocortical responses to pups in male California mice (Peromyscus californicus)

    Full text link
    In biparental mammals, the factors facilitating the onset of male parental behavior are not well understood. While hormonal changes in fathers may play a role, prior experience with pups has also been implicated. We evaluated effects of prior exposure to pups on paternal responsiveness in the biparental California mouse (Peromyscus californicus). We analyzed behavioral, neural, and corticosterone responses to pups in adult virgin males that were interacting with a pup for the first time, adult virgin males that had been exposed to pups 3 times for 20min each in the previous week, and new fathers. Control groups of virgins were similarly tested with a novel object (marble). Previous exposure to pups decreased virgins' latency to approach pups and initiate paternal care, and increased time spent in paternal care. Responses to pups did not differ between virgins with repeated exposure to pups and new fathers. In contrast, repeated exposure to a marble had no effects. Neither basal corticosterone levels nor corticosterone levels following acute pup or marble exposure differed among groups. Finally, Fos expression in the medial preoptic area, ventral and dorsal bed nucleus of the stria terminalis was higher following exposure to a pup than to a marble. Fos expression was not, however, affected by previous exposure to these stimuli. These results suggest that previous experience with pups can facilitate the onset of parental behavior in male California mice, similar to findings in female rodents, and that this effect is not associated with a general reduction in neophobia

    Paternal Care in Biparental Rodents: Intra- and Inter-individual Variation

    Full text link
    Parental care by fathers, although rare among mmmals, can be essential for the survival and normal development of offspring in biparental species. A growing body of research on biparental rodents has identified several developmental and experiential influences on paternal responsiveness. Some of these factors, such as pubertal maturation, interactions with pups, and cues from a pregnant mate, contribute to pronounced changes in paternal responsiveness across the course of the lifetime in individual males. Others, particularly intrauterine position during gestation and parental care received during postnatal development, can have long-term effects on paternal behavior and contribute to stable differences among individuals within a species. Focusing on five well-studied, biparental rodent species, we review the developmental and experiential factors that have been shown to influence paternal responsiveness, and consider their roles in generating both intra- and inter-individual variation. We also review hormones and neuropeptides that have been shown to modulate paternal care and discuss their potential contributions to behavioral differences within and between males. Finally, we discuss the possibility that vasopressinergic and possibly oxytocinergic signaling within the brain, modulated by gonadal steroid hormones, may represent the "final common pathway" mediating effects of developmental and experiential variables on intra- and inter-individual variation in paternal care

    Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus).

    No full text
    Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions

    Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus)

    Full text link
    Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, nonchallenging laboratory conditions
    corecore