13 research outputs found
Re-evaluating Adjuvant Breast Cancer Trials: Assessing Hormone Receptor Status by Immunohistochemical Versus Extraction Assays
Background: Tumor levels of steroid hormone receptors, a factor used to select adjuvant treatment for early-stage breast cancer, are currently determined with immunohistochemical assays. These assays have a discordance of 10%-30% with previously used extraction assays. We assessed the concordance and predictive value of hormone receptor status as determined by immunohistochemical and extraction assays on specimens from International Breast Cancer Study Group Trials VIII and IX. These trials predominantly used extraction assays and compared adjuvant chemoendocrine therapy with endocrine therapy alone among pre- and postmenopausal patients with lymph node-negative breast cancer. Trial conclusions were that combination therapy provided a benefit to pre- and postmenopausal patients with estrogen receptor (ER)-negative tumors but not to ER-positive postmenopausal patients. ER-positive premenopausal patients required further study. Methods: Tumor specimens from 571 premenopausal and 976 postmenopausal patients on which extraction assays had determined ER and progesterone receptor (PgR) levels before randomization from October 1, 1988, through October 1, 1999, were re-evaluated with an immunohistochemical assay in a central pathology laboratory. The endpoint was disease-free survival. Hazard ratios of recurrence or death for treatment comparisons were estimated with Cox proportional hazards regression models, and discriminatory ability was evaluated with the c index. All statistical tests were two-sided. Results: Concordance of hormone receptor status determined by both assays ranged from 74% (κ = 0.48) for PgR among postmenopausal patients to 88% (κ = 0.66) for ER in postmenopausal patients. Hazard ratio estimates were similar for the association between disease-free survival and ER status (among all patients) or PgR status (among postmenopausal patients) as determined by the two methods. However, among premenopausal patients treated with endocrine therapy alone, the discriminatory ability of PgR status as determined by immunohistochemical assay was statistically significantly better (c index = 0.60 versus 0.51; P = .003) than that determined by extraction assay, and so immunohistochemically determined PgR status could predict disease-free survival. Conclusions: Trial conclusions in which ER status (for all patients) or PgR status (for postmenopausal patients) was determined by immunohistochemical assay supported those determined by extraction assays. However, among premenopausal patients, trial conclusions drawn from PgR status differed—immunohistochemically determined PgR status could predict response to endocrine therapy, unlike that determined by the extraction assa
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
Adjuvant letrozole versus tamoxifen according to centrally-assessed ERBB2 status for postmenopausal women with endocrine-responsive early breast cancer: supplementary results from the BIG 1-98 randomised trial
Background: The Breast International Group (BIG) 1-98 trial (a randomised double-blind phase III trial) has shown that letrozole significantly improves disease-free survival (DFS) compared with tamoxifen in postmenopausal women with endocrine-responsive early breast cancer. Our aim was to establish whether the benefit of letrozole versus tamoxifen differs according to the ERBB2 status of tumours. Methods: The BIG 1-98 trial consists of four treatment groups that compare 5 years of monotherapy with letrozole or tamoxifen, and sequential administration of one drug for 2 years followed by the other drug for 3 years. Our study includes data from the 4922 patients randomly assigned to the two monotherapy treatment groups (letrozole or tamoxifen for 5 years; 51 months median follow-up [range <1 to 90 months]). A central assessment of oestrogen receptor (ER), progesterone receptor (PgR) and ERBB2 status using paraffi n-embedded primary tumour material was possible for 3650 (74%) patients. ER, PgR, and ERBB2 expression were measured by immunohistochemistry (IHC) and ERBB2-positivity was confirmed by fluorescence in-situ hybridisation (FISH). Positive staining in at least 1% of cells was considered to show presence of ER or PgR expression. Tumours were deemed ERBB2-positive if amplified by FISH, or, for the few tumours with unassessable or unavailable FISH results, if they were IHC 3+. Hazard ratios (HR) estimated by Cox modelling were used to compare letrozole with tamoxifen for DFS, which was the primary endpoint, and to assess treatment-by-covariate interactions. The BIG 1-98 trial is registered on the clinical trials site of the US National Cancer Institute website http://www.clinicaltrials.gov/ct/show/NCT00004205. Findings: By central assessment 7% (257 of 3650) of tumours were classified as ERBB2-positive. In 3533 patients with tumours confirmed to express ER, DFS was poorer in patients with ERBB2-positive tumours (n=239) than in those with ERBB2-negative tumours (n=3294; HR 2·09 [95% CI 1·59–2·76]; p<0·0001). There was no statistical evidence of heterogeneity in the treatment effect according to ERBB2 status of the tumour (p=0·60 for interaction), thus, letrozole improves DFS compared with tamoxifen regardless of ERBB2 status. The observed HRs were 0·62 (95% CI 0·37–1·03) for ERBB2-positive tumours and 0·72 (0·59–0·87) for ERBB2-negative tumours. Interpretation: A benefit of letrozole over tamoxifen was noted, irrespective of ERBB2 status of the tumour, and, therefore, ERBB2 status does not seem to be a selection criterion for treatment with letrozole versus tamoxifen in postmenopausal women with endocrine-responsive early breast cancer
Practice perspectives and theoretical debates about social workers’ legal powers to protect adults
Recommended from our members
Two truncating variants in FANCC and breast cancer risk
Abstract: Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44–1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants