324 research outputs found
Cell_motility: a cross-platform, open source application for the study of cell motion paths
BACKGROUND: Migration is an important aspect of cellular behaviour and is therefore widely studied in cell biology. Numerous components are known to participate in this process in a highly dynamic manner. In order to obtain a better insight in cell migration, mutants or drugs are used and their motive phenotype is then linked with the disturbing factors. One of the typical approaches to study motion paths of individual cells relies on fitting mean square displacements to a persistent random walk function. Since the numerous calculations involved often rely on diverse commercial software packages, the analysis can be expensive, labour-intensive and error-prone work. Additionally, due to the nature of algorithms employed the calculations involved are not readily reproducible without access to the exact software package(s) used. RESULTS: We here present the cell_motility software, an open source Java application under the GNU-GPL license that provides a clear and concise analysis workbench for large amounts of cell motion data. Apart from performing the necessary calculations, the software also visualizes the original motion paths as well as the results of the calculations to help the user interpret the data. The application features an intuitive graphical user interface as well as full user and developer documentation and both source and binary files can be freely downloaded from the project website at . CONCLUSION: In providing a free, open source software solution for the automated processing of cell motion data, we aim to achieve two important goals: labs can greatly simplify their data analysis pipeline as switching between different computational software packages becomes obsolete (thus reducing the chances for human error during data manipulation and transfer) and secondly, to provide scientists in the field with a freely available common platform to perform their analyses, enabling more efficient data quality control through peer reviewing
On the non-abelian Brumer-Stark conjecture and the equivariant Iwasawa main conjecture
We show that for an odd prime p, the p-primary parts of refinements of the
(imprimitive) non-abelian Brumer and Brumer-Stark conjectures are implied by
the equivariant Iwasawa main conjecture (EIMC) for totally real fields.
Crucially, this result does not depend on the vanishing of the relevant Iwasawa
mu-invariant. In combination with the authors' previous work on the EIMC, this
leads to unconditional proofs of the non-abelian Brumer and Brumer-Stark
conjectures in many new cases.Comment: 33 pages; to appear in Mathematische Zeitschrift; v3 many minor
updates including new title; v2 some cohomological arguments simplified; v1
is a revised version of the second half of arXiv:1408.4934v
Transcriptome pathways unique to dehydration tolerant relatives of modern wheat
Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats
Directed cell migration in the presence of obstacles
BACKGROUND: Chemotactic movement is a common feature of many cells and microscopic organisms. In vivo, chemotactic cells have to follow a chemotactic gradient and simultaneously avoid the numerous obstacles present in their migratory path towards the chemotactic source. It is not clear how cells detect and avoid obstacles, in particular whether they need a specialized biological mechanism to do so. RESULTS: We propose that cells can sense the presence of obstacles and avoid them because obstacles interfere with the chemical field. We build a model to test this hypothesis and find that this naturally enables efficient at-a-distance sensing to be achieved with no need for a specific and active obstacle-sensing mechanism. We find that (i) the efficiency of obstacle avoidance depends strongly on whether the chemotactic chemical reacts or remains unabsorbed at the obstacle surface. In particular, it is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones. (ii) The typically low noise in a cell's motion hinders the ability to avoid obstacles. We also derive an expression estimating the typical distance traveled by chemotactic cells in a 3D random distribution of obstacles before capture; this is a measure of the distance over which chemotaxis is viable as a means of directing cells from one point to another in vivo. CONCLUSION: Chemotactic cells, in many cases, can avoid obstacles by simply following the spatially perturbed chemical gradients around obstacles. It is thus unlikely that they have developed specialized mechanisms to cope with environments having low to moderate concentrations of obstacles
On gene dosage balance in protein complexes: a comment on Semple JI, Vavouri T, Lehner B. A simple principle concerning the robustness of protein complex activity to changes in gene expression.
A comment on Semple JI, Vavouri T, Lehner B. A simple principle concerning the robustness of protein complex activity to changes in gene expression. BMC Syst Biol. 2008;2:
Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation
Nicotine is an important chemical compound in nature that has been regarded as an environmental toxicant causing various preventable diseases. Several bacterial species are adapted to decompose this heterocyclic compound, including Pseudomonas and Arthrobacter. Pseudomonas putida S16 is a bacterium that degrades nicotine through the pyrrolidine pathway, similar to that present in animals. The corresponding late steps of the nicotine degradation pathway in P. putida S16 was first proposed and demonstrated to be from 2,5-dihydroxy-pyridine through the intermediates N-formylmaleamic acid, maleamic acid, maleic acid, and fumaric acid. Genomics of strain S16 revealed that genes located in the largest genome island play a major role in nicotine degradation and may originate from other strains, as suggested by the constructed phylogenetic tree and the results of comparative genomic analysis. The deletion of gene hpo showed that this gene is essential for nicotine degradation. This study defines the mechanism of nicotine degradation
The increase in cancer prevalence and hospital burden in Western Australia, 1992-2011
Purpose - To describe cancer prevalence and hospital service utilization by prevalent cancer patients in Western Australia from 1992 to 2011. Methods - This study was a population-based cohort study using the Western Australia (WA) Cancer Registry (1982 to 2011) as the source of incident cancer cases. These data were linked to mortality (1982 to 2011) and hospital morbidity (1998 to 2011) records via the WA Data Linkage System to ascertain complete and limited-duration prevalence and cancer-related hospitalizations over time. Prevalence rates were calculated using estimated residential population data from the Australian Bureau of Statistics. Results - In 2011, one in every 27 people living in WA had been diagnosed with cancer at some time in their lifetime, and one in 68 had been diagnosed within the previous five years. Between 1992 and 2011, complete cancer prevalence in Western Australia increased by a magnitude of 2.5-fold. Forty-five and 44% of the increase in complete cancer prevalence in males and females between 1992 and 2011 can be attributed to prostate and breast cancer, respectively. The absolute number of cancer-related bed days increased 81 and 74% in males and females, respectively, diagnosed within one year, between 1998 and 2011. Conclusions - The prevalence of cancer and the burden it places on hospitals continues to rise, demanding ongoing efforts to prevent cancer through modifiable risk factors and better, more efficient use of health resources. Steps should to be taken to understand and address overdiagnosis and overtreatmen
Obesity Impact on the Attentional Cost for Controlling Posture
International audienceBACKGROUND: This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. METHODS: Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. FINDINGS: (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. INTERPRETATION: Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities
How Attractive Is the Girl Next Door? An Assessment of Spatial Mate Acquisition and Paternity in the Solitary Cape Dune Mole-Rat, Bathyergus suillus
Behavioural observations of reproduction and mate choice in wild fossorial rodents are extremely limited and consequently indirect methods are typically used to infer mating strategies. We use a combination of morphological, reproductive, spatial, and genetic data to investigate the reproductive strategy of a solitary endemic species, the Cape dune mole-rat Bathyergus suillus. These data provide the first account on the population dynamics of this species. Marked sexual dimorphism was apparent with males being both significantly larger and heavier than females. Of all females sampled 36% had previously reproduced and 12% were pregnant at the time of capture. Post-partum sex ratio was found to be significantly skewed in favour of females. The paternity of fifteen litters (n = 37) was calculated, with sires assigned to progeny using both categorical and full probability methods, and including a distance function. The maximum distance between progeny and a putative sire was determined as 2149 m with males moving between sub-populations. We suggest that above-ground movement should not be ignored in the consideration of mate acquisition behaviour of subterranean mammals. Estimated levels of multiple paternity were shown to be potentially as high as 26%, as determined using sibship and sire assignment methods. Such high levels of multiple paternity have not been found in other solitary mole-rat species. The data therefore suggest polyandry with no evidence as yet for polygyny
- …