46 research outputs found
Intimate partner violence types are differentially associated with substance use among young, urban, sexual minority men of color
Sexual minority men of color report intimate partner violence (IPV) and substance use at elevated rates compared to heterosexual peers, but little is known about how types (physical/sexual, controlling, monitoring, emotional) of perpetration and victimization are connected to types of substance use. Associations between past-6-month IPV experiences and substance use (tobacco, alcohol, cannabis, poppers, cocaine) were examined among sexual minority men (N = 414; 18–27 years). IPV victimization and perpetration were reported by 22% and 14% of the sample. Any victimization and controlling victimization were positively correlated with tobacco use, physical victimization was positively correlated with cocaine and poppers use, and monitoring victimization was negatively correlated with cannabis and poppers use. Any perpetration was positively correlated with tobacco use and binge drinking, and emotional perpetration was positively correlated with binge drinking. Understanding and addressing IPV victimization and perpetration experiences are critical for understanding risk conferred by IPV in this population
Exploring Triadic Family Relationship Profiles and Their Implications for Adolescents’ Early Substance Initiation
This study examined combinations of warmth and hostility in mother-father-adolescent triadic relationships when adolescents were in 6th grade and associations with adolescent middle school substance initiation. We conducted a latent profile analysis with a sample of 687 two-parent families (52.4% of adolescents were female, mean age = 11.27 at 6th grade). These analyses revealed five profiles of triadic relationships, labeled as: cohesive families (46%, high warmth and low hostility in all three dyads), compensatory families (24%, low interparental warmth but high parent-adolescent warmth), disengaged families (13%, average to low warmth and hostility in three dyads), distressed families (9%, high hostility and low warmth in all three dyads), and conflictual families (8%, high hostility and average warmth in all three dyads). There were significant differences across triadic relationship profiles in rate of alcohol initiation during middle school. Specifically, adolescents in distressed families and conflictual families initiated alcohol at higher rates than adolescents in other types of families. Cohesive families and compensatory families initiated alcohol at the lowest rates among all five types of families. Similar patterns appeared for drunkenness and cigarettes. Implications for family-based interventions to decrease adolescent substance use and future research directions are discussed
Generalized quantum Fokker-Planck, diffusion and Smoluchowski equations with true probability distribution functions
Traditionally, the quantum Brownian motion is described by Fokker-Planck or
diffusion equations in terms of quasi-probability distribution functions, e.g.,
Wigner functions. These often become singular or negative in the full quantum
regime. In this paper a simple approach to non-Markovian theory of quantum
Brownian motion using {\it true probability distribution functions} is
presented. Based on an initial coherent state representation of the bath
oscillators and an equilibrium canonical distribution of the quantum mechanical
mean values of their co-ordinates and momenta we derive a generalized quantum
Langevin equation in -numbers and show that the latter is amenable to a
theoretical analysis in terms of the classical theory of non-Markovian
dynamics. The corresponding Fokker-Planck, diffusion and the Smoluchowski
equations are the {\it exact} quantum analogues of their classical
counterparts. The present work is {\it independent} of path integral
techniques. The theory as developed here is a natural extension of its
classical version and is valid for arbitrary temperature and friction
(Smoluchowski equation being considered in the overdamped limit).Comment: RevTex, 16 pages, 7 figures, To appear in Physical Review E (minor
revision
Dirichlet sigma models and mean curvature flow
The mean curvature flow describes the parabolic deformation of embedded
branes in Riemannian geometry driven by their extrinsic mean curvature vector,
which is typically associated to surface tension forces. It is the gradient
flow of the area functional, and, as such, it is naturally identified with the
boundary renormalization group equation of Dirichlet sigma models away from
conformality, to lowest order in perturbation theory. D-branes appear as fixed
points of this flow having conformally invariant boundary conditions. Simple
running solutions include the paper-clip and the hair-pin (or grim-reaper)
models on the plane, as well as scaling solutions associated to rational (p, q)
closed curves and the decay of two intersecting lines. Stability analysis is
performed in several cases while searching for transitions among different
brane configurations. The combination of Ricci with the mean curvature flow is
examined in detail together with several explicit examples of deforming curves
on curved backgrounds. Some general aspects of the mean curvature flow in
higher dimensional ambient spaces are also discussed and obtain consistent
truncations to lower dimensional systems. Selected physical applications are
mentioned in the text, including tachyon condensation in open string theory and
the resistive diffusion of force-free fields in magneto-hydrodynamics.Comment: 77 pages, 21 figure
Bosonic Excitations in Random Media
We consider classical normal modes and non-interacting bosonic excitations in
disordered systems. We emphasise generic aspects of such problems and parallels
with disordered, non-interacting systems of fermions, and discuss in particular
the relevance for bosonic excitations of symmetry classes known in the
fermionic context. We also stress important differences between bosonic and
fermionic problems. One of these follows from the fact that ground state
stability of a system requires all bosonic excitation energy levels to be
positive, while stability in systems of non-interacting fermions is ensured by
the exclusion principle, whatever the single-particle energies. As a
consequence, simple models of uncorrelated disorder are less useful for bosonic
systems than for fermionic ones, and it is generally important to study the
excitation spectrum in conjunction with the problem of constructing a
disorder-dependent ground state: we show how a mapping to an operator with
chiral symmetry provides a useful tool for doing this. A second difference
involves the distinction for bosonic systems between excitations which are
Goldstone modes and those which are not. In the case of Goldstone modes we
review established results illustrating the fact that disorder decouples from
excitations in the low frequency limit, above a critical dimension , which
in different circumstances takes the values and . For bosonic
excitations which are not Goldstone modes, we argue that an excitation density
varying with frequency as is a universal
feature in systems with ground states that depend on the disorder realisation.
We illustrate our conclusions with extensive analytical and some numerical
calculations for a variety of models in one dimension
Gravitational Lensing by Black Holes
We review the theoretical aspects of gravitational lensing by black holes,
and discuss the perspectives for realistic observations. We will first treat
lensing by spherically symmetric black holes, in which the formation of
infinite sequences of higher order images emerges in the clearest way. We will
then consider the effects of the spin of the black hole, with the formation of
giant higher order caustics and multiple images. Finally, we will consider the
perspectives for observations of black hole lensing, from the detection of
secondary images of stellar sources and spots on the accretion disk to the
interpretation of iron K-lines and direct imaging of the shadow of the black
hole.Comment: Invited article for the GRG special issue on lensing (P. Jetzer, Y.
Mellier and V. Perlick Eds.). 31 pages, 12 figure
Competing orders in a magnetic field: spin and charge order in the cuprate superconductors
We describe two-dimensional quantum spin fluctuations in a superconducting
Abrikosov flux lattice induced by a magnetic field applied to a doped Mott
insulator. Complete numerical solutions of a self-consistent large N theory
provide detailed information on the phase diagram and on the spatial structure
of the dynamic spin spectrum. Our results apply to phases with and without
long-range spin density wave order and to the magnetic quantum critical point
separating these phases. We discuss the relationship of our results to a number
of recent neutron scattering measurements on the cuprate superconductors in the
presence of an applied field. We compute the pinning of static charge order by
the vortex cores in the `spin gap' phase where the spin order remains
dynamically fluctuating, and argue that these results apply to recent scanning
tunnelling microscopy (STM) measurements. We show that with a single typical
set of values for the coupling constants, our model describes the field
dependence of the elastic neutron scattering intensities, the absence of
satellite Bragg peaks associated with the vortex lattice in existing neutron
scattering observations, and the spatial extent of charge order in STM
observations. We mention implications of our theory for NMR experiments. We
also present a theoretical discussion of more exotic states that can be built
out of the spin and charge order parameters, including spin nematics and phases
with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see
http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new
work of Chen and Ting; (v3) reorganized presentation for improved clarity,
and added new appendix on microscopic origin; (v4) final published version
with minor change
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
vitro synergy and enhanced murine brain penetration of saquinavir coadministered with mefloquine
ABSTRACT Highly active antiretroviral therapy has substantially improved prognosis in human immunodeficiency virus (HIV). However, the integration of proviral DNA, development of viral resistance, and lack of permeability of drugs into sanctuary sites (e.g., brain and lymphocyte) are major limitations to current regimens. Previous studies have indicated that the antimalarial drug chloroquine (CQ) has antiviral efficacy and a synergism with HIV protease inhibitors. We have screened a panel of antimalarial compounds for activity against HIV-1 in vitro. A limited efficacy was observed for CQ, mefloquine (MQ), and mepacrine (MC). However, marked synergy was observed between MQ and saquinavir (SQV), but not CQ in U937 cells. Furthermore, enhancement of the antiviral activity of SQV and four other protease inhibitors (PIs) by MQ was observed in MT4 cells, indicating a class specific rather than a drug-specific phenomenon. We demonstrate that these observations are a result of inhibition of multiple drug efflux proteins by MQ and that MQ also displaces SQV from orosomucoid in vitro. Finally, coadministration of MQ and SQV in CD-1 mice dramatically altered the tissue distribution of SQV, resulting in a Ͼ3-fold and Ͼ2-fold increase in the tissue/blood ratio for brain and testis, respectively. This pharmacological enhancement of in vitro antiviral activity of PIs by MQ now warrants further examination in vivo