513 research outputs found

    Model of Dipole Field Variations in the LEP Bending Magnets

    Get PDF
    The determination of the Z mass at LEP requires a knowledge of the relative beam energy in the order of 10 ppm, therefore it is essential to understand the dipole field variations to the same level of accuracy. In LEP the bending magnet field shows a relative increase of the order of 100 ppm over 10 hours, which was found to be caused by leakage currents from railways flowing along the vacuum cham ber and temperature variations. A LEP dipole test bench was set up for systematic investigations. Field variations were monitored with NMR probes while the cooling water temperature of both coil and vacuum chamber was kept under control. The results lead to a parametrisation of the magnetic field variation as a function of the vacuum chamber current and temperature

    A continuous sampling scheme for edge illumination x-ray phase contrast imaging

    Get PDF
    We discuss an alternative acquisition scheme for edge illumination (EI) x-ray phase contrast imaging (XPCi) based on a continuous scan of the object, and compare its performance to that of a previously used scheme, which involved scanning the object in discrete steps rather than continuously. By simulating signals for both continuous and discrete methods under realistic experimental conditions, the e ect of the spatial sampling rate is analysed with respect to metrics such as image contrast and accuracy of the retrieved phase shift. Experimental results con rm the theoretical predictions. Despite being limited to a speci c example, the results indicate that continuous schemes present advantageous features compared to discrete ones. Not only can they be used to speed up the acquisition, but they also prove superior in terms of accurate phase retrieval. The theory and experimental results provided in this study will guide the design of future EI experiments through the implementation of optimised acquisition schemes and sampling rates

    N2_2 and Xe Gas Scintillation Cross-Section, Spectrum, and Lifetime Measurements from 50 MeV to 26 GeV at the CERN PS and Booster

    Get PDF
    Beam parameters in CERN's Proton Synchrotron (PS) accelerator must be controlled (and measured) with tighter precision than ever before to meet the stringent requirements of the Large Hadron Collider (LHC) programme. A non-destructive beam profile measurement system would be a valuable diagnostic tool. To this end, we measured N2 and Xe gas scintillation absolute cross-sections and lifetimes for proton beam energies from 1.4 to 25 GeV, which should prove valuable in the design and construction of a gas scintillation profile measurement system. We also measured relative cross-sections for proton beam energies between 0.05 and 1.4 GeV

    Improved sensitivity at synchrotrons using edge illumination X-ray phase-contrast imaging

    Get PDF
    The application of the X-ray phase-contrast ‘edge illumination’ principle to the highly coherent beams available at synchrotron radiation facilities is presented here. We show that, in this configuration, the technique allows achieving unprecedented angular sensitivity, of the order of few nanoradians. The results are obtained at beamlines of two different synchrotron radiation facilities, using various experimental conditions. In particular, different detectors and X-ray energies (12 keV and 85 keV) were employed, proving the flexibility of the method and the broad range of conditions over which it can be applied. Furthermore, the quantitative separation of absorption and refraction information, and the application of the edge illumination principle in combination with computed tomography, are also demonstrated. Thanks to its extremely high phase sensitivity and its flexible applicability, this technique will both improve the image quality achievable with X-ray phase contrast imaging and allow tackling areas of application which remain unexplored until now

    Experimental benchmarking of Monte Carlo simulations for radiotherapy dosimetry using monochromatic X-ray beams in the presence of metal-based compounds

    Get PDF
    The local dose deposition obtained in X-ray radiotherapy can be increased by the presence of metal-based compounds in the irradiated tissues. This finding is strongly enhanced if the radiation energy is chosen in the kiloelectronvolt energy range, due to the proximity to the absorption edge. In this study, we present a MC application developed with the toolkit Geant4 to investigate the dosimetric distribution of a uniform monochromatic X-ray beam, and benchmark it against experimental measurements. Two validation studies were performed, using a commercial PTW RW3 water-equivalent slab phantom for radiotherapy, and a custom-made PMMA phantom conceived to assess the influence of high atomic number compounds on the dose profile, such as iodine and gadolinium at different concentrations. An agreement within 9% among simulations and experimental data was found for the monochromatic energies considered, which were in the range of 30–140 keV; the agreement was better than 5% for depths <60 mm. A dose enhancement was observed in the calculations, corresponding to the regions containing the contrast agents. Dose enhancement factors (DEFs) were calculated, and the highest values were found for energies higher than the corresponding K-edges of iodine and gadolinium. The in-silico results are in line with the empirical findings, which suggest that Geant4 can be satisfactorily used as a tool for the calculation of the percentage depth dose (PDD) at the energies considered in this study in the presence of contrast agents

    X-Ray Phase-Contrast Imaging with Nanoradian Angular Resolution

    Get PDF
    We present a new quantitative x-ray phase-contrast imaging method based on the edge illumination principle, which allows achieving unprecedented nanoradian sensitivity. The extremely high angular resolution is demonstrated theoretically and through experimental images obtained at two different synchrotron radiation facilities. The results, achieved at both very high and very low x-ray energies, show that this highly sensitive technique can be efficiently exploited over a very broad range of experimental conditions. This method can open the way to new, previously inaccessible scientific applications in various fields including biology, medicine and materials science

    Status of the HIE-ISOLDE project at CERN

    Full text link
    The HIE-ISOLDE project represents a major upgrade of the ISOLDE nuclear facility with a mandate to significantly improve the quality and increase the intensity and energy of radioactive nuclear beams produced at CERN. The project will expand the experimental nuclear physics programme at ISOLDE by focusing on an upgrade of the existing Radioactive ion beam EXperiment (REX) linac with a 40 MV superconducting linac comprising thirty-two niobium-on-copper sputter-coated quarter-wave resonators housed in six cryomodules. The new linac will raise the energy of post-accelerated beams from 3 MeV/u to over 10 MeV/u. The upgrade will be staged to first deliver beam energies of 5.5 MeV/u using two high-β\beta cryomodules placed downstream of REX, before the energy variable section of the existing linac is replaced with two low-β\beta cryomodules and two additional high-β\beta cryomodules are installed to attain over 10 MeV/u with full energy variability above 0.45 MeV/u. An overview of the project including a status summary of the different R&D activities and the schedule will outlined.Comment: 7 pages, 12 figures, submitted to the Heavy Ion Accelerator Technology conference (HIAT) 2012, in Chicag
    • …
    corecore