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We discuss an alternative acquisition scheme for edge illumination (EI) x-ray phase

contrast imaging (XPCi) based on a continuous scan of the object, and compare its

performance to that of a previously used scheme, which involved scanning the object

in discrete steps rather than continuously. By simulating signals for both continuous

and discrete methods under realistic experimental conditions, the effect of the spatial

sampling rate is analysed with respect to metrics such as image contrast and accuracy

of the retrieved phase shift. Experimental results confirm the theoretical predictions.

Despite being limited to a specific example, the results indicate that continuous

schemes present advantageous features compared to discrete ones. Not only can they

be used to speed up the acquisition, but they also prove superior in terms of accurate

phase retrieval. The theory and experimental results provided in this study will

guide the design of future EI experiments through the implementation of optimized

acquisition schemes and sampling rates.
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I. INTRODUCTION

In x-ray phase contrast imaging (XPCi), contrast is driven by the phase shift that x-rays

suffer while they travel through matter. Local variations in this phase shift translate into

small deviations of x-rays from their path (x-ray refraction). This can offer a promising

alternative to conventional, attenuation-based x-ray imaging for the visualization of weakly

attenuating specimens, due to the fact that phase effects are often stronger in this case1. To

date, several XPCi modalities have been developed2–7. The edge illumination (EI) method

stands out due to its high phase sensitivity and versatility8–10. In particular, the method

was shown to be applicable both with highly coherent synchrotron radiation, as well as with

incoherent radiation from conventional x-ray tubes11. The method is naturally suited to

the latter since it is non-interferometric and achromatic12. The working principle of EI is

shown in Fig. 1: a slit collimates the beam upstream of the object, typically down to 10-20

µm, and a second slit, positioned in front of the detector, stops half of the beam, while the

remaining half is allowed through. This “edge illumination” configuration creates sensitivity

to refraction in addition to attenuation: when x-rays are refracted towards the uncovered

detector area, an increased intensity is measured. Vice versa, when x-rays are refracted

towards the covered area (downwards in Fig. 1(a)), a decreased intensity is measured. By

repositioning the slit such that the other edge is illuminated (“opposing EI configuration”

[Fig. 1(b)]), the effect of the refraction direction on the measured intensity is reversed. An

image can be obtained by scanning the object vertically through the setup, a requirement

that is eliminated if both slits are replaced by aperture masks which split the beam into

an array of “beamlets” and repeat the EI configuration over the entire field of view of an

area detector11. The latter is equivalent to the slit setup, provided the beamlets remain

physically separated.

Without any processing, images show a combination of attenuation and refraction con-

trast, the latter having a “differential” nature and thus being strongest at sharp transitions

within the object13. In fact, the refraction angle is expressed by α = (λ/2π) · ∂Φ/∂y, where

Φ is the phase shift and λ is the wavelength. Separate attenuation and refraction maps

can be extracted through a procedure based on the acquisition of two images in opposing

EI configurations8,14. From refraction angle images, the phase shift can be recovered via

one-dimensional integration (“phase retrieval”), as required for truly quantitative imaging
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FIG. 1. Working principle of EI. Panels a) and b) show the setup in opposing edge illumination

configurations.

and computed tomography (CT)15.

The spatial sampling rate in EI is determined by the step size of the scan, or by the

period of the sample mask in the full-field implementation of EI if additional scanning

is not performed16,17. According to Nyquist’s theorem18,19, aliasing is avoided if a signal is

sampled at or above twice its highest spatial frequency (Nyquist frequency, fN). The Nyquist

frequency is determined by the object itself and the resolution limit of the system. Since

EI is a differential XPC technique, signals can contain high spatial frequencies, especially

at the edges of object features due to the measurement of a derivative. Consequently,

optimal sampling requires high sampling rates, implying high dose delivery and long scan

times. Therefore, a previous study investigated the effect of sampling rates below fN
17. It

demonstrated that planar images of the phase shift can be severely affected, to a degree that

the quantitative accuracy is lost.

In that previous study, a discrete sampling scheme was used, meaning that the object

was kept in a fixed position while the detector was acquiring, and then stepped before the

acquisition of the next frame (“discrete acquisition”). Here, we propose the use of an al-

ternative approach in which the object is moved continuously by a certain distance (step

size) while the detector is acquiring and kept in a fixed position during detector read-out

(“continuous acquisition”). We use a theoretical approach to simulate and compare contin-

uous and discrete EI acquisitions of a wire phantom under realistic experimental conditions.
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We analyze how the sampling rate affects a) the contrast in unprocessed (i.e. not phase-

retrieved) images and b) the quantitative accuracy of the phase shift obtained through phase

retrieval. Experimental results obtained using synchrotron radiation are presented, which

support the theory. The presented formulas and general data analysis strategy will guide

future EI acquisitions, both in terms of which acquisition scheme to use and how to select

the sampling rate.

II. THEORY

Let us assume an experimental setup as shown in Fig. 1 and a parallel beam of unit

intensity. The z-axis is assumed to intersect the y-axis at y = 0. The effect of an object in the

beam is described by its complex transmission function q(y;λ) =
√
T (y;λ) · exp{iΦ(y;λ)},

where:

T (y;λ) = exp

{
−4π

λ

∫
β(y, z;λ)dz

}
(1)

Φ(y;λ) =
2π

λ

∫
δ(y, z;λ)dz (2)

are the beam transmission and phase shift, respectively. The parameters β and δ, which

form the complex refractive index (n = 1−δ+iβ), denote the attenuation and phase shifting

properties of the object. The transmission function of the first slit can be written as the

following box function:

Πd1(y) =

0, if |y| > d1
2

1, if |y| ≤ d1
2
.

(3)

The intensity distribution on the detector plane for the object scan position s can then be

written as20:

I(y, s;λ) = | [q(y − s;λ) · Πd1(y)] ? hz2(y;λ)|2 ? g(y), (4)

where hz2 is the Fresnel propagator evaluated at distance z2, g(y) is the source distribution

projected onto the detector plane and ? indicates convolution. Assuming an ideal detec-

tor response, the recorded signal is given by the intensity distribution integrated over the

uncovered detector area:

Sideal(s;λ) =

∫ d2/2

0

I(y, s;λ)dy. (5)
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Likewise, in the opposing edge illumination condition this is given by:

Sopp
ideal(s;λ) =

∫ 0

−d2/2

I(y, s;λ)dy. (6)

Equations 5 and 6 represent ideal EI signals obtained with an infinitely high sampling

rate. In a real experiment, however, finite sampling needs to be used due to time and dose

restrictions. When the object is scanned in a discrete manner with step size ∆s, data at

the nth scanning step are given by Sdiscr(∆s, s0, n;λ) = Sideal(s0 + (n− 1)∆s;λ), (or by the

corresponding expression for the opposing EI configuration). The parameter s0 denotes the

object position at the start of the scan; together with the step size ∆s, this determines the

exact sampling locations. When the proposed continuous acquisition scheme is employed

instead, the signal is given by the following integral:

Scont(∆s, s0, n;λ) =
1

∆s

∫ ∆s/2

−∆s/2

Sideal(s0 + (n− 1)∆s− s;λ)ds, (7)

which can also be expressed in form of a convolution:

Scont(∆s, s0, n;λ) =
1

∆s
[Sideal ? Π∆s](s0 + (n− 1)∆s;λ). (8)

Equations 5 to 8 allow simulating EI signals acquired with discrete and continuous schemes

for different experimental parameters. In particular, the spatial sampling rate (fs) can be

varied since it is related to the step size via fs = 1/∆s.

III. SIMULATIONS

Data were simulated for a polyethylene terephthalate (PET) wire of 500 µm in diameter.

Parameters z1, z2, d1 and d2 were chosen to match a specific experimental setup implemented

at beamline ID17 of the European Synchrotron Radiation Facility (ESRF), described below.

Moreover, a Gaussian shaped source distribution with a full width half maximum (FWHM)

dimension of 24 µm and a 47 keV beam energy were assumed. Theoretical β- and δ-values

for PET at 47 keV were obtained from an online database21. To first approximation, the

spatial resolution limit in EI is given by the minimum between d1 and max(σ,
√
z2λ), where

σ denotes the dimension of the source projected onto the detector plane16. For the simulated

experimental conditions, d1= 20 µm, σ ≈ 0.6 µm and
√
z2λ ≈ 9.5 µm, thus the resolution

limit is approximately 9.5 µm. Simulations were run for step sizes (∆s) ranging from 50
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µm to 0.1 µm, corresponding to sampling rates (fs) ranging from 0.02 samples/µm to 10

samples/µm. Due to it being much smaller than the resolution limit, the smallest simulated

step (∆s = 0.1 µm) ensures that no undersampling artefacts occur in the ideal signals [Eqs.

5, 6]. The parameter s0 was varied from -350 µm to -300 µm, such that the object was

located outside the beam at the start of the scan. The 50 µm variation for s0 was selected to

cover a distance between at least two adjacent sampling points for all step sizes; this ensures

that all possible outcomes for different s0 are detected.

Simulated signals were analysed as a function of the step size (∆s) and the parameter s0,

and the following metrics were considered. First, the contrast in the unprocessed (non-phase

retrieved) signals was calculated as the relative signal difference between the maximum value

at the left edge of the wire and the background:

C(∆s, s0) =
Sedge(∆s, s0)− Sbackground

Sbackground

. (9)

The dependence on λ has been dropped to shorten the expression. It should be noted that

the use of the right edge of the wire would lead to equivalent results, since the ideal intensity

profiles are almost perfectly symmetric [see Fig. 2]. Second, refraction angles were extracted

using two signals simulated at opposite EI configurations8,14, from which phase shifts were

retrieved via numerical integration:

Φ(∆s, s0, n) = ∆s · 2π

λ

n∑
n′=1

α(∆s, s0, n
′). (10)

For evaluation of the phase shifts accuracy, its maximum value was extracted:

Φmax(∆s, s0) = max
n

Φ(∆s, s0, n). (11)

For a cylindrical object like a wire this is located in the centre of the retrieved profile.

IV. EXPERIMENTAL VERIFICATION

Experiments were performed at beamline ID17 of the ESRF. The source-to-object and

propagation distances were approximately 140 m (z1) and 3.45 m (z2), respectively. The

source has full width half maximum (FWHM) dimensions of about 123 µm (H) x 24 µm

(V). The beam was monochromatized by a fixed-exit Laue/Laue silicon (1,1,1) crystal to an

energy of 47 keV (∆E/E ≈ 0.02%). The detector was the FReLoN CCD camera22 coupled
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to a 40 µm thick Gd3Ga5O12 scintillator, resulting in an effective pixel size of 46 x 46 µm2. A

slit placed upstream the object collimated the beam to 20 µm vertically (d1). No horizontal

collimation was applied. A second slit with a vertical opening of 250 µm (d2) was placed

in front of the detector and shifted such that 50% of the collimated beam fell on the active

detector area [see Fig. 1].

The imaged object was a PET fibre (Goodfellow, UK) with a nominal diameter of 500

µm. The object was scanned in continuous and discrete modes with a step size of 20 µm

(∆s), which corresponds to a sampling rate of 0.05 samples/µm (fs). The exposure time

was 2 s per scanning step in both cases. In order to also obtain data for a lower sampling

rate (∆s = 40 µm; fs = 0.025 samples/µm), the images acquired with the discrete scheme

were subsampled along the scanning direction by a factor of two, and a two-pixel binning

was applied to the image acquired with the continuous scheme. Images were corrected for

dark current and flat field variations, and contrast and retrieved phase shift were calculated

according to Eqs. 9 and 11.

V. RESULTS AND DISCUSSION

A. Effect on Contrast

Figures 2(a) to (c) show simulated profile signals of a wire for continuous (red line,

circles) and discrete (blue line, squares) acquisition schemes and different step sizes (∆s =

50, 20, 1 µm), corresponding to sampling rates of fs = 0.02, 0.05 and 1 samples/µm. In

these examples, the wire was initially positioned at s0 = -350 µm in all cases. Additionally,

each panel contains the respective ideal signal (black line). Note that the ideal signal was

simulated according to Eq. 5 and that it therefore already contains any blurring effects

due to the imaging system. The sharp fringes at the edges of the wire are a characteristic

feature of differential XPCi techniques, and contrast is effectively determined by the peak

height. For lower sampling rates (∆s = 50, 20 µm), it can be observed that the contrast is

reduced compared to the ideal case. On the other hand, for a high sampling rate (∆s = 1

µm), contrast is practically identical to the ideal case. The same behaviour is illustrated in

more detail in Figs. 2(d) and (e), where the contrast extracted from all simulated signals

(∆s = 50 µm to 0.1 µm, s0 = -350 µm to -300 µm) is displayed as a function of ∆s and s0.
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Generally, it can be seen that contrast increases with higher sampling rates.

FIG. 2. EI signals of a PET wire (diameter 500 µm), simulated with step sizes (∆s) of 50 µm, 20

µm and 1 µm (a-c). Contrast obtainable from continuous and discrete acquisition schemes as a

function of step size (∆s) and the position of the object at the start of the scan (s0) (d, e).

For the continuous acquisition [Fig. 2(d)], this can be explained by the fact that the

object movement effectively acts as a low pass filter on the ideal signal. In Eq. 8, this is

represented by the convolution with a box function of width ∆s. By assuming that to first

approximation the sinc function (i.e. the Fourier transform of the box function) assumes

negligible values beyond its first root, the cut-off frequency induced by the low pass filter is

given by the inverse of the step size, i.e. fcut = 1/∆s. Hence, smaller step sizes correspond

to higher cut-off frequences, which means that fringes are less smeared and contrast is

preserved. The filtering also explains why the contrast in Fig. 2(d) is almost independent

from s0: for lower sampling rates the fringes are blurred, hence they are less sensitive to
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FIG. 3. Experimental images of a PET wire acquired with continuous and discrete acquisition

schemes and step sizes of ∆s = 40 µm (a,b) and ∆s = 20 µm (d,e). Profiles extracted from the

experimental images (c,f).

where they are sampled.

Conversely, for the discrete acquisition [Fig. 2(e)], contrast shows a strong dependence

on s0. This can be understood by noting that in this case no filtering occurs, and the ideal

signal is sampled directly; thus, high spatial frequencies (which translate into sharper phase

fringes) are preserved. Consequently, when large step sizes are employed, it is unlikely that

the fringes are sampled exactly at the peaks where maximum contrast occurs, although this

is in principle possible for a few values of s0. As the sampling rate increases, this becomes

more likely, hence the increased contrast and reduced dependence on s0.

To some extent, one may consider the discrete scheme superior in terms of contrast since

very high contrast values can potentially be obtained at low sampling rates, which is not

possible with a continuous scheme. However, it should be noted that while in a simulation

study it is possible to investigate the effect of s0 and consequently select this parameter

in such a way that contrast is maximized, s0 effectively assumes random values in a real

experiment.
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Figure 3 shows experimental data of a PET wire acquired with continuous and discrete

acquisition schemes: the top and bottom rows show data obtained with step sizes of 40

µm and 20 µm, respectively. Besides the obvious fact that images obtained with a higher

sampling rate (∆s = 20 µm) have better resolution, Fig. 3(a) clearly shows the blur induced

by the continuous acquisition. Contrast in each images was calculated on a column by

column basis according to Eq. 9 and averaged. For a step size of 40 µm, this yielded 0.16 ±

0.02 and 0.19 ± 0.05 contrast for the continuous and the discrete acquisitions, respectively.

For a step size of 20 µm, contrast was 0.21 ± 0.02 (continuous aquisition) and 0.23 ± 0.03

(discrete acquisition). The errors represent one standard deviation of all values averaged to

obtain the results, and indicate the contrast variation across the images. The values are in

agreement with the predictions of Figs. 2(d) and (e): for both acquisition schemes, contrast

is increased for the higher sampling rate. Moreover, the contrast variation is smaller for the

continuous than the discrete scheme, confirming the weaker dependence on the parameter

s0. Figs. 3(c) and (f) show profiles extracted along the indicated lines. The error bars

represent the noise level in the background of the images.

B. Effect on Phase Shift

Figure 4 illustrates how continuous and discrete acquisition schemes, as well as the sam-

pling rate, influence the phase shift that can be retrieved from two EI signals obtained under

opposing EI conditions. Panels 4(a) to (c) show phase shift profiles that were retrieved from

signals simulated for step sizes of 50, 20 and 1 µm (corresponding to sampling rates of 0.02,

0.05 and 1 samples/µm), respectively. It can be seen that already for ∆s = 50 µm the

phase shift retrieved through a continuous scheme is a good approximation of the ideal case,

apart from a slight blur at the edges and a small underestimation in the centre of the wire.

In comparison, the profile obtained through a discrete scheme differs significantly from the

ideal case: the phase shift is overestimated within the wire, and does not come back to the

baseline at the end of the wire, leading to a gross underestimation outside it. The discrete

signal improves for ∆s = 20 µm, and for ∆s = 1 µm it becomes practically identical to both

the continuous and ideal case.

Figs. 4(d) and (e) show the maximum phase shift (Φmax) retrieved from all simulations

(∆s = 50 µm to 0.1 µm, s0 = -350 µm to -300 µm) as a function of step size (∆s) and
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FIG. 4. Phase shift profiles extracted from two signals of a PET wire (diameter 500 µm) that were

simulated under opposing edge illumination conditions with step sizes (∆s) of 50 µm, 20 µm and

1 µm (a-c). Maximum retrieved phase shift (Φmax) from discrete and continuous acquisitions as a

function of the step size (∆s) and the position of the object at the start of the scan (s0) (d,e).

position of the object at the start of the scan (s0). The phase shift value retrieved from

the ideal signals (Φideal = 15.04 rad) is indicated by the dashed lines in the colour bars in

both panels. The general behaviour of the retrieved phase shift reflects what was discussed

in relation to Figs. 4(a) to (c). In the plot for the continuous scheme [Fig. 4(d)], the phase

shift shows a high accuracy and a weak dependence on s0, which is a result of near optimal

sampling: since the sampling rate is always equal to the cut-off frequency, it is smaller than

the Nyquist frequency by only a factor of two (fs = fcut = 0.5fN). Alternatively, the high

accuracy can be understood by noting that, in the continuous case, the extracted refraction

angle can be expressed via the following integral, in analogy to Eq. 7:

α(∆s, s0, n) ≈ 1

∆s

∫ ∆s/2

−∆s/2

αideal(s0 + (n′ − 1)∆s− s′)ds′, (12)

i.e. in terms of refraction angle that would be extracted from ideal signals (ideal). If this is
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inserted into Eq. 10, the following relation can be obtained:

Φ(∆s, s0, n) ≈ 2π

λ

∫ s0+n∆s

s0

αideal(s
′)ds′ = Φideal(s0 + n∆s). (13)

Hence, in a continuous acquisition, the retrieved phase shift is effectively a sampled version

of the phase shift obtained from ideal signals. For a fixed value of ∆s, the maximum of the

sampled phase shift can be slightly smaller than that of the ideal phase shift, depending on

s0. However, phase values have a much higher degree of accuracy compared to a standard

discrete acquisition. For example, a step size of 50 µm yields the phase shift with a maxi-

mum error of 11%, and for step sizes smaller than 40 µm the error is below 10%.

In contrast, for the discrete scheme [Fig. 4(e)], the accuracy of the retrieved phase shift is

strongly influenced by the parameter s0, which in the worst case can lead underestimations

and overestimations of up to 80% compared to the nominal value. This can be understood

by noting that, if the individual EI signals are undersampled [Figs. 2(a) and (b)], so is

the extracted refraction angle, which can cause problems during the retrieval of the phase

shift. For example, if the left phase fringe is not sampled at its peak, the integration of the

refraction angle can yield an underestimated phase shift. Conversely, if the fringe is sampled

very close to the peak, Eq. 10 yields an overestimated phase shift due to the use of the sum

rule: the multiplication of the peak value times a large step size leads to an excessive weight

being assigned to it. For the same reasons, the phase shift can be under- or overestimated

on the right hand side of the wire. When the sampling rate is increased, this effect becomes

weaker as the phase fringes are more accurately sampled (which also means that the sum

in Eq. 10 becomes a better representation of the integration operation). Hence, to reliably

retrieve the phase shift from a discrete acquisition with a high accuracy, a high sampling

rate is required17. For example, to achieve an accuracy of 10% independent of s0, a step size

below 9.5 µm is necessary. Note also that this value matches the intrinsic resolution limit of

the system (see Section 3); implying that the Nyquist rate, which in this case is 1/(2x9.5)

samples/µm, is approximately met. As a consequence, for this combination of object and

experimental parameters, the discrete scheme requires about four times more data than the

continuous scheme in order to reliably retrieve the phase shift with the same accuracy.

It should be highlighted that the latter observation holds for planar EI scans only. As

was shown previously, when the method is used as a CT modality, accurate quantitative

information can also be retrieved with low sampling rates from a discrete scheme17. This
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can be understood intuitively: undersampling artefacts “average out” during the CT re-

construction process, since data is effectively measured multiple times (for each projection

angle).

Figure 5 shows phase shift images obtained from experimental data acquired with con-

tinuous and discrete acquisition schemes: the top and bottom rows show data obtained with

step sizes of 40 µm and 20 µm, respectively. The maximum phase shifts were calculated on

a column by column basis according to Eq. 11 and averaged. For a step size of 40 µm, this

yielded phase shifts of 16.1 ± 0.6 rad and 16.2 ± 2.6 rad for the continuous and the discrete

acquisition, respectively. For a step size of 20 µm, the maximum retrieved phase shifts were

16.1 ± 0.6 rad (continuous aquisition) and 16.2 ± 0.9 rad (discrete acquisition). The errors

represent one standard deviation of all values averaged to obtain the results, and are an

indication of the phase shift variation across the images. Note that due to the binning (see

Section 4), the values for ∆s = 40 µm and ∆s = 20 µm are expected to be similar in the

continuous case. The fact that errors are generally smaller for the continuous than for the

discrete scheme confirms the predictions of Figs. 4(d) and (e), and indicate a more reliable

retrieval of accurate phase shift values. The large errors in the discrete case are a result of

the strong dependence of the retrieved phase shift on s0, which effectively varies horizontally

due to the inclination of the wire. This explains the stripy appearance of the discrete images,

which is especially pronounced for the lower sampling rate [Fig. 5(b)]. Figs. 5(c) and (f)

show profiles extracted along the indicated lines. The error bars represent the noise level in

the background of the images. Profiles show the substantial superiority of the continuous

acquisition scheme for low sampling rates, as the phase underestimation on the right hand

side of the wire caused by the discrete scheme in this case is effectively eliminated.

VI. CONCLUSIONS

We discussed an alternative acquisition scheme for EI imaging based on a continuous in-

stead of discrete object movement, and evaluated its performance using the exemplary case

of a wire phantom and realistic experimental parameters. Criteria for comparison between

the new and the previously used acquisition schemes were achievable contrast and accuracy

of the retrieved phase shift, as a function of the sampling rate. Theoretical conclusions were

supported by experimental results obtained at beamline ID17 of the ESRF.
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FIG. 5. Experimental images showing the phase shift of a PET wire retrieved from data acquired

with discrete and continuous acquisition schemes and step sizes of ∆s = 40 µm (a,b) and ∆s = 20

µm (d,e). Profiles extracted from the experimental images (c,f).

The results indicate that contrast in unprocessed (i.e. non-phase retrieved) images is

generally reduced by low sampling rates. For the continuous acquisition scheme, this is a

result of the signal blur induced by the object movement. No blurring occurs during discrete

scans, hence high frequencies are preserved, but contrast ultimately depends on the exact

locations of the sampling points, determined by the position of the object at the start of

the scan. The results further indicate that, when quantitatively accurate phase shift images

are required, continuous acquisition schemes perform better than discrete ones. Although

during a continuous scan a degree of blur is introduced, accurate phase shift values can be

retrieved even for low sampling rates. In order to reliably achieve a comparable accuracy

with a discrete scheme, significantly more data are required. An important consequence

is that scans can be performed with less dose compared to discrete ones, which is a clear

advantage for biological applications where low dose delivery is important. Moreover, con-

tinuous scans are generally faster than discrete ones.

On the other hand, discrete acquisitions could be advantageous in situations where quan-
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titative phase retrieval is not required, due to the reduced blurring typically leading to

higher overall peak-to-peak contrast. For example, if the purpose is an improved visual-

ization/detection of faint details, a single “mixed” (attenuation plus edge enhancement due

to phase effects) image could be sufficient, and indeed this is the strategy adopted by e.g.

the in vivo mammography program underway at the Trieste synchrotron23. It should be

noted that, in the absence of additional sample scanning, this is effectively the case in the

adaptation of the edge illumination method to conventional sources through masks featuring

multiple apertures. A “single shot” (mixed) acquisition in that case effectively provides a

discretely sampled image with sampling step equal to the pixel size, and indeed that ap-

proach was proven to yield significantly improved visibility in the imaging of beast tissue24

and other areas.
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