23 research outputs found

    The distribution and characterization of HNK-1 antigens in the developing avian heart

    Get PDF
    The heart originates from splanchnic mesoderm and to a lesser extent from neural crest cells. The HNK-1 monoclonal antibody is a marker for early migrating neural crest cells, but reacts also with structures which are not derived from the neural crest. We investigated whether heart structures are HNK-1 positive before neural crest cells colonize these target tissues. To that end, we determined the HNK-1 antigen expression in the developing avian heart on immunohistochemical sections and on Western blots. The HNK-1 immunoreactivity in the developing chick heart is compared with data from literature cm the localization of neural crest cells in chick/quail chimeras. Structures with neural crest contribution, including parts of the early outflow tract and the related endocardial cushions, the primordia of the semilunar valve leaflets and the aorticopulmonary septum were HNK-1 positive. Furthermore, other structures were HNK-1 positive, such as the atrioventricular cushions, the wall of the sinus venosus at stage HH 15 through 21, parts of the endocardium at E3, parts of the myocardium at E6, and the extracellular matrix in the myocardial base of the semilunar valves at E14. HNK-1 expression was particularly observed in morphologically dynamic regions such as the developing valves, the outflow tract cushion, the developing conduction system and the autonomie nervous system of the heart. We observed that atrioventricular endocardial cushions are HNK-1 positive. We conclude that: a HNK-1 immunoreactivity does not always coincide with the presence of neural crest cells or their derivatives; (2) the outflow tract cushions and atrioventricular endocardial cushions are HNK-1 positive before neural crest cells are expected (stage HH 19) to enter the endocardial cushions of the outflow tract; (3) the observed spatio-temporal HNK-1 patterns observed in the developing heart correspond with various HNK-1 antigens. Apart from a constant pattern of HNK-1 antigens during development, stage-dependent HNK-1 antigens were also found

    Primary human osteoblasts in response to 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3and 24R,25-dihydroxyvitamin D3

    Get PDF
    The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not only converted to 1,25(OH)2D3, but also to 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) which may have bioactivity as well. Therefore we used a primary human osteoblast model to examine whether 25(OH)D3 itself can affect osteoblast function using CYP27B1 silencing and to investigate whether 24R,25(OH)2D3 can affect osteoblast function. We showed that primary human osteoblasts responded to both 25(OH)D3 and 1,25(OH)2D3 by reducing their proliferation and enhancing their differentiation by the increase of alkaline phosphatase, osteocalcin and osteopontin expression. Osteoblasts expressed CYP27B1 and CYP24 and synthesized 1,25(OH)2D3 and 24R,25(OH)2D3 dose-dependently. Silencing of CYP27B1 resulted in a decline of 1,25(OH)2D3 synthesis, but we observed no significant differences in mRNA levels of differentiation markers in CYP27B1-silenced cells compared to control cells after treatment with 25(OH)D3. We demonstrated that 24R,25(OH)2D3 increased mRNA levels of alkaline phosphatase, osteocalcin and osteopontin. In addition, 24R,25(OH)2D3 strongly increased CYP24 mRNA. In conclusion, the vitamin D metabolites 25(OH)D3, 1,25(OH)2D3 and 24R,25(OH)2D3 can affect osteoblast differentiation directly or indirectly. We showed that primary human osteoblasts not only respond to 1,25(OH)2D3, but also to 24R,25(OH)2D3 by enhancing osteoblast differentiation. This suggests that 25(OH)D3 can affect osteoblast differentiation via conversion to the active metabolite 1,25(OH)2D3, but also via conversion to 24R,25(OH)2D3. Whether 25(OH)D3 has direct actions on osteoblast function needs further investigation

    Bone pain and extremely low bone mineral density due to severe vitamin D deficiency in celiac disease

    Get PDF
    Case report A 29-year-old wheelchair-bound woman was presented to us by the gastroenterologist with suspected osteomalacia. She had lived in the Netherlands all her life and was born of Moroccan parents. Her medical history revealed iron deficiency, growth retardation, and celiac disease, for which she was put on a gluten-free diet. She had progressive bone pain since 2 years, difficulty with walking, and about 15 kg weight loss. She had a short stature, scoliosis, and pronounced kyphosis of the spine and poor condition of her teeth. Laboratory results showed hypocalcemia, an immeasurable serum25-hydroxyvitamin D level, and elevated parathyroid hormone and alkaline phosphatase levels. Spinal radiographs showed unsharp, low contrast vertebrae. Bone mineral density measurement at the lumbar spine and hip showed a T-score of -6.0 and -6.5, respectively. A bone scintigraphy showed multiple hotspots in ribs, sternum, mandible, and long bones. A duodenal biopsy revealed villous atrophy (Marsh 3C) and positive antibodies against endomysium, transglutaminase, and gliadin, compatible with active celiac disease. A bone biopsy showed severe osteomalacia but normal bone volume. She was treated with calcium intravenously and later orally. Furthermore, she was treated with high oral doses of vitamin D and a gluten-free diet. After a few weeks of treatment, her bone pain decreased, and her muscle strength improved. Discussion In this article, the pathophysiology and occurrence of osteomalacia as a complication of celiac disease are discussed. Low bone mineral density can point to osteomalacia as well as osteoporosis. © International Osteoporosis Foundation and National Osteoporosis Foundation 2011

    Vitamin B-12 deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid

    Get PDF
    The risk of nutrient deficiencies increases with age in our modern Western society, and vitamin B(12) deficiency is especially prevalent in the elderly and causes increased homocysteine (Hcy) and methylmalonic acid (MMA) levels. These three factors have been recognized as risk factors for reduced bone mineral density and increased fracture risk, though mechanistic evidence is still lacking. In the present study, we investigated the influence of B(12), Hcy, and MMA on differentiation and activity of bone cells. B(12) deficiency did not affect the onset of osteoblast differentiation, maturation, matrix mineralization, or adipocyte differentiation from human mesenchymal stem cells (hMSCs). B(12) deficiency caused an increase in the secretion of Hcy and MMA into the culture medium by osteoblasts, but Hcy and MMA appeared to have no effect on hMSC osteoblast differentiation. We further studied the effect of B(12), Hcy, and MMA on the formation of multinucleated tartrate-resistant acid phosphatase-positive osteoclasts from mouse bone marrow. We observed that B(12) did not show an effect on osteoclastogenesis. However, Hcy as well as MMA were found to induce osteoclastogenesis in a dose-dependent manner. On the basis of these results, we conclude that B(12) deficiency may lead to decreased bone mass by increased osteoclast formation due to increased MMA and Hcy levels

    Long-Term Safety of Bone Regeneration Using Autologous Stromal Vascular Fraction and Calcium Phosphate Ceramics:A 10-Year Prospective Cohort Study

    No full text
    This prospective cohort study aimed to assess long-term safety, dental implant survival, and clinical and radiological outcomes after maxillary sinus floor elevation (MSFE; lateral window technique) using freshly isolated autologous stromal vascular fraction (SVF) combined with calcium phosphate ceramics. All 10 patients previously participating in a phase I trial were included in a 10-year follow-up. They received either β-tricalcium phosphate (β-TCP; n = 5) or biphasic calcium phosphate (BCP; n = 5) with SVF-supplementation on one side (study). Bilaterally treated patients (6 of 10; 3 β-TCP, 3 BCP) received only calcium phosphate on the opposite side (control). Clinical and radiological assessments were performed on 44 dental implants at 1-month pre-MSFE, and 0.5- to 10-year post-MSFE. Implants were placed 6 months post-MSFE. No adverse events or pathology was reported during a 10-year follow-up. Forty-three dental implants (98%) remained functional. Control and study sides showed similar peri-implant soft-tissue quality, sulcus bleeding index, probing depth, plaque index, keratinized mucosa width, as well as marginal bone loss (0-6 mm), graft height loss (0-6 mm), and graft volume reduction. Peri-implantitis was observed around 6 implants (control: 4; study: 2) in 3 patients. This study is the first to demonstrate the 10-year safety of SVF-supplementation in MSFE for jawbone reconstruction. SVF-supplementation showed enhanced bone regeneration in the short term (previous study) and led to no abnormalities clinically and radiologically in the long term.</p

    Bone vitality and vascularization of mandibular and maxillary bone grafts in maxillary sinus floor elevation: A retrospective cohort study

    No full text
    Objectives: Mandibular retromolar (predominantly cortical) and maxillary tuberosity (predominantly cancellous) bone grafts are used in patients undergoing maxillary sinus floor elevation (MSFE) for dental implant placement. The aim of this retrospective cohort study was to investigate whether differences exist in bone formation and vascularization after grafting with either bone source in patients undergoing MSFE. Methods: Fifteen patients undergoing MSFE were treated with retromolar (n = 9) or tuberosity (n = 6) bone grafts. Biopsies were taken 4 months postoperatively prior to dental implant placement, and histomorphometrically analyzed to quantify bone and osteoid area, number of total, apoptotic, and receptor activator of nuclear factor-κB ligand (RANKL)-positive osteocytes, small and large-sized blood vessels, and osteoclasts. The grafted area was divided in three regions (caudal-cranial): RI, RII, and RIII. Results: Bone volume was 40% (RII, RIII) higher and osteoid volume 10% (RII) lower in retromolar compared to tuberosity-grafted areas. Total osteocyte number and number of RANKL-positive osteocytes were 23% (RII) and 90% (RI, RII) lower, but osteoclast number was higher (retromolar: 12, tuberosity: 0) in retromolar-grafted areas. The total number of blood vessels was 80% (RI) to 60% (RIII) lower, while the percentage of large-sized blood vessels was 86% (RI) to 25% (RIII) higher in retromolar-grafted areas. Number of osteocyte lacunae and apoptotic osteocytes were similar in both bone grafts used. Conclusions: Compared to the retromolar bone, tuberosity bone showed increased bone vitality and vascularization in patients undergoing MSFE, likely due to faster bone remodeling or earlier start of new bone formation. Therefore, tuberosity bone grafts might perform better in enhancing bone regeneration

    Is There a Governing Role of Osteocytes in Bone Tissue Regeneration?

    No full text
    Purpose of Review: Bone regeneration plays an important role in contemporary clinical treatment. Bone tissue engineering should result in successful bone regeneration to restore congenital or acquired bone defects in the human skeleton. Osteocytes are thought to have a governing role in bone remodeling by regulating osteoclast and osteoblast activity, and thus bone loss and formation. In this review, we address the so far largely unknown role osteocytes may play in bone tissue regeneration. Recent Findings: Osteocytes release biochemical signaling molecules involved in bone remodeling such as prostaglandins, nitric oxide, Wnts, and insulin-like growth factor-1 (IGF-1). Treatment of mesenchymal stem cells in bone tissue engineering with prostaglandins (e.g., PGE2, PGI2, PGF2α), nitric oxide, IGF-1, or Wnts (e.g., Wnt3a) improves osteogenesis. Summary: This review provides an overview of the functions of osteocytes in bone tissue, their interaction with other bone cells, and their role in bone remodeling. We postulate that osteocytes may have a pivotal role in bone regeneration as well, and consequently that the bone regeneration process may be improved effectively and rapidly if osteocytes are optimally used and stimulated

    Kappa-carrageenan-Functionalization of octacalcium phosphate-coated titanium Discs enhances pre-osteoblast behavior and osteogenic differentiation

    No full text
    Bioactive coatings are promising for improving osseointegration and the long-term success of titanium dental or orthopaedic implants. Biomimetic octacalcium phosphate (OCP) coating can be used as a carrier for osteoinductive agents. κ-Carrageenan, a highly hydrophilic and biocompatible seaweed-derived sulfated-polysaccharide, promotes pre-osteoblast activity required for bone regeneration. Whether κ-carrageenan can functionalize OCP-coating to enhance osseointegration of titanium implants is unclear. This study aimed to analyze carrageenan-functionalized biomimetic OCP-coated titanium structure, and effects of carrageenan functionalization on pre-osteoblast behavior and osteogenic differentiation. Titanium discs were coated with OCP/κ-carrageenan at 0.125–2 mg/ml OCP solution, and physicochemical and biological properties were investigated. κ-Carrageenan (2 mg/ml) in the OCP coating of titanium discs decreased the pore size in the sheet-like OCP crystal by 41.32%. None of the κ-carrageenan concentrations tested in the OCP-coating did affect hydrophilicity. However, κ-carrageenan (2 mg/ml) increased (1.26-fold) MC3T3-E1 pre-osteoblast spreading at 1 h i.e., κ-Carrageenan in the OCP-coating increased pre-osteoblast proliferation (max. 1.92-fold at 2 mg/ml, day 1), metabolic activity (max. 1.50-fold at 2 mg/ml, day 3), and alkaline phosphatase protein (max. 4.21-fold at 2 mg/ml, day 3), as well as matrix mineralization (max. 5.45-fold at 2 mg/ml, day 21). κ-Carrageenan (2 mg/ml) in the OCP-coating increased gene expression of Mepe (4.93-fold) at day 14, and Runx2 (2.94-fold), Opn (3.59-fold), Fgf2 (3.47-fold), Ocn (3.88-fold), and Dmp1 (4.59-fold) at day 21 in pre-osteoblasts. In conclusion, κ-carrageenan modified the morphology and microstructure of OCP-coating on titanium discs, and enhanced pre-osteoblast metabolic activity, proliferation, and osteogenic differentiation. This suggests that κ-carrageenan-functionalized OCP coating may be promising for in vivo improvement of titanium implant osseointegration
    corecore