85 research outputs found

    Variation of natural frequencies by circular saw blade rotation

    Get PDF
    In this paper the influence of circular saw blade rotation, slot shapes and number of slots on its natural frequencies and critical speeds is investigated. Firstly, the governing equation that describes the transverse vibrations of a stationary circular plate clamped at its centre is derived using Hamilton\u2019s principle and based on Kirchhoff-Love plate theory and von Karman strain theory. The results are then compared with the ones obtained using FEM method and the FEM method is then applied to the real circular saw blade model. Finally, influence of slot shapes and number of slots on natural frequencies and critical speeds is investigated

    EBV-gp350 Confers B-Cell Tropism to Tailored Exosomes and Is a Neo-Antigen in Normal and Malignant B Cells—A New Option for the Treatment of B-CLL

    Get PDF
    gp350, the major envelope protein of Epstein-Barr-Virus, confers B-cell tropism to the virus by interacting with the B lineage marker CD21. Here we utilize gp350 to generate tailored exosomes with an identical tropism. These exosomes can be used for the targeted co-transfer of functional proteins to normal and malignant human B cells. We demonstrate here the co-transfer of functional CD154 protein on tailored gp350+ exosomes to malignant B blasts from patients with B chronic lymphocytic leukemia (B-CLL), rendering B blasts immunogenic to tumor-reactive autologous T cells. Intriguingly, engulfment of gp350+ exosomes by B-CLL cells and presentation of gp350-derived peptides also re-stimulated EBV-specific T cells and redirected the strong antiviral cellular immune response in patients to leukemic B cells. In essence, we show that gp350 alone confers B-cell tropism to exosomes and that these exosomes can be further engineered to simultaneously trigger virus- and tumor-specific immune responses. The simultaneous exploitation of gp350 as a tropism molecule for tailored exosomes and as a neo-antigen in malignant B cells provides a novel attractive strategy for immunotherapy of B-CLL and other B-cell malignancies

    LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1 -Rac1 pathway

    Get PDF
    Leucine-rich repeat-containing G protein–coupled receptor 5 (LGR5) is a bona fide marker of adult stem cells in several epithelial tissues, most notably in the intestinal crypts, and is highly up-regulated in many colorectal, hepatocellular, and ovarian cancers. LGR5 activation by R-spondin (RSPO) ligands potentiates Wnt/β-catenin signaling in vitro; however, deletion of LGR5 in stem cells has little or no effect on Wnt/β-catenin signaling or cell proliferation in vivo. Remarkably, modulation of LGR5 expression has a major impact on the actin cytoskeletal structure and cell adhesion in the absence of RSPO stimulation, but the molecular mechanism is unclear. Here, we show that LGR5 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1), an effector of Rac1/CDC42 GTPases, in the regulation of actin cytoskeleton dynamics and cell–cell adhesion. Specifically, LGR5 decreased levels of IQGAP1 phosphorylation at Ser-1441/1443, leading to increased binding of Rac1 to IQGAP1 and thus higher levels of cortical F-actin and enhanced cell–cell adhesion. LGR5 ablation in colon cancer cells and crypt stem cells resulted in loss of cortical F-actin, reduced cell–cell adhesion, and disrupted localization of adhesion-associated proteins. No evidence of LGR5 coupling to any of the four major subtypes of heterotrimeric G proteins was found. These findings suggest that LGR5 primarily functions via the IQGAP1–Rac1 pathway to strengthen cell–cell adhesion in normal adult crypt stem cells and colon cancer cells

    A Novel Multiplex Cell Viability Assay for High-Throughput RNAi Screening

    Get PDF
    Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%–58.7±14.4% when two indicators were combined and 40–48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost

    Global surgery, obstetric, and anaesthesia indicator definitions and reporting: An Utstein consensus report

    Get PDF
    Background Indicators to evaluate progress towards timely access to safe surgical, anaesthesia, and obstetric (SAO) care were proposed in 2015 by the Lancet Commission on Global Surgery. These aimed to capture access to surgery, surgical workforce, surgical volume, perioperative mortality rate, and catastrophic and impoverishing financial consequences of surgery. Despite being rapidly taken up by practitioners, data points from which to derive the indicators were not defined, limiting comparability across time or settings. We convened global experts to evaluate and explicitly define—for the first time—the indicators to improve comparability and support achievement of 2030 goals to improve access to safe affordable surgical and anaesthesia care globally. Methods and findings The Utstein process for developing and reporting guidelines through a consensus building process was followed. In-person discussions at a 2-day meeting were followed by an iterative process conducted by email and virtual group meetings until consensus was reached. The meeting was held between June 16 to 18, 2019; discussions continued until August 2020. Participants consisted of experts in surgery, anaesthesia, and obstetric care, data science, and health indicators from high-, middle-, and low-income countries. Considering each of the 6 indicators in turn, we refined overarching descriptions and agreed upon data points needed for construction of each indicator at current time (basic data points), and as each evolves over 2 to 5 (intermediate) and >5 year (full) time frames. We removed one of the original 6 indicators (one of 2 financial risk protection indicators was eliminated) and refined descriptions and defined data points required to construct the 5 remaining indicators: geospatial access, workforce, surgical volume, perioperative mortality, and catastrophic expenditure. A strength of the process was the number of people from global institutes and multilateral agencies involved in the collection and reporting of global health metrics; a limitation was the limited number of participants from low- or middle-income countries—who only made up 21% of the total attendees. Conclusions To track global progress towards timely access to quality SAO care, these indicators—at the basic level—should be implemented universally as soon as possible. Intermediate and full indicator sets should be achieved by all countries over time. Meanwhile, these evolutions can assist in the short term in developing national surgical plans and collecting more detailed data for research studies.publishedVersio

    Nucleus-targeted Dmp1 transgene fails to rescue dental defects in Dmp1 null mice

    Get PDF
    Dentin matrix protein 1 (DMP1) is essential to odontogenesis. Its mutations in human subjects lead to dental problems such as dental deformities, hypomineralization and periodontal impairment. Primarily, DMP1 is considered as an extracellular matrix protein that promotes hydroxyapatite formation and activates intracellular signaling pathway via interacting with αvβ3 integrin. Recent in vitro studies suggested that DMP1 might also act as a transcription factor. In this study, we examined whether full-length DMP1 could function as a transcription factor in the nucleus and regulate odontogenesis in vivo. We first demonstrated that a patient with the DMP1 M1V mutation, which presumably causes a loss of the secretory DMP1 but does not affect the nuclear translocation of DMP1, shows a typical rachitic tooth defect. Furthermore, we generated transgenic mice expressing (NLS)DMP1, in which the endoplasmic reticulum (ER) entry signal sequence of DMP1 was replaced by a nuclear localization signal (NLS) sequence, under the control of a 3.6 kb rat type I collagen promoter plus a 1.6 kb intron 1. We then crossbred the (NLS)DMP1 transgenic mice with Dmp1 null mice to express the (NLS)DMP1 in Dmp1-deficient genetic background. Although immunohistochemistry demonstrated that (NLS)DMP1 was localized in the nuclei of the preodontoblasts and odontoblasts, the histological, morphological and biochemical analyses showed that it failed to rescue the dental and periodontal defects as well as the delayed tooth eruption in Dmp1 null mice. These data suggest that the full-length DMP1 plays no apparent role in the nucleus during odontogenesis

    Empowered Agents or Empowered Agencies: Assessing the Risk Regulatory Regimes in the Norwegian and US Offshore Oil and Gas Industry

    No full text
    Advances in Safety, Reliability and Risk Management contains the papers presented at the 20th European Safety and Reliability (ESREL 2011) annual conference in Troyes, France, in September 2011. The books covers a wide range of topics, including: Accident and Incident Investigation; Bayesian methods; Crisis and Emergency Management; Decision Making under Risk; Dynamic Reliability; Fault Diagnosis, Prognosis and System Health Management; Fault Tolerant Control and Systems; Human Factors and Human Reliability; Maintenance Modelling and Optimisation; Mathematical Methods in Reliability and Safety; Occupational Safety; Quantitative Risk Assessment; Reliability and Safety Data Collection and Analysis; Risk and Hazard Analysis; Risk Governance; Risk Management; Safety Culture and Risk Perception; Structural Reliability and Design Codes; System Reliability Analysis; Uncertainty and Sensitivity Analysis. Advances in Safety, Reliability and Risk Management will be of interest to academics and professionals working in a wide range of scientific, industrial and governmental sectors, including: Aeronautics and Aerospace; Chemical and Process Industry; Civil Engineering; Critical Infrastructures; Energy; Information Technology and Telecommunications; Land Transportation; Manufacturing; Maritime Transportation; Mechanical Engineering; Natural Hazards; Nuclear Industry; Offshore Industry; Policy Making and Public Planning

    Risk Regulation and Proceduralization: An Assessment of Norwegian and US Risk Regulation in Offshore Oil and Gas Industry

    No full text
    The aim of this chapter is twofold; firstly, we explore characteristics of the Norwegian and US regulatory regimes by comparing difference and similarities, and secondly we assess some implications of these regimes for the industrial actors and their roles regarding proceduralization

    Risk Regulation and Proceduralization: An Assessment of Norwegian and US Risk Regulation in Offshore Oil and Gas Industry

    No full text
    The aim of this chapter is twofold; firstly, we explore characteristics of the Norwegian and US regulatory regimes by comparing difference and similarities, and secondly we assess some implications of these regimes for the industrial actors and their roles regarding proceduralization
    • …
    corecore