2,931 research outputs found
Shape-resonance-induced non-Franck–Condon effects in (2+1) resonance enhanced multiphoton ionization of the C 3Πg state of O2
We show that strong non-Franck–Condon effects observed in (2+1) resonance enhanced multiphoton ionization of the C 3Pig state of O2 are due to the ksigmau shape resonance previously observed in single-photon studies of diatomic molecules. Calculated vibrational branching ratios for the v=2,3 levels of the C 3Πg state are in reasonable agreement with experiment. Certain discrepancies remain in comparing theoretical results with the measured spectra, and possible electron-correlation effects which underly this are discussed
Optical implementation of continuous-variable quantum cloning machines
We propose an optical implementation of the Gaussian continuous-variable
quantum cloning machines. We construct a symmetric N -> M cloner which
optimally clones coherent states and we also provide an explicit design of an
asymmetric 1 -> 2 cloning machine. All proposed cloning devices can be built
from just a single non-degenerate optical parametric amplifier and several beam
splitters.Comment: 4 pages, 3 figures, REVTe
Generalized uncertainty relations: Theory, examples, and Lorentz invariance
The quantum-mechanical framework in which observables are associated with
Hermitian operators is too narrow to discuss measurements of such important
physical quantities as elapsed time or harmonic-oscillator phase. We introduce
a broader framework that allows us to derive quantum-mechanical limits on the
precision to which a parameter---e.g., elapsed time---may be determined via
arbitrary data analysis of arbitrary measurements on identically prepared
quantum systems. The limits are expressed as generalized Mandelstam-Tamm
uncertainty relations, which involve the operator that generates displacements
of the parameter---e.g., the Hamiltonian operator in the case of elapsed time.
This approach avoids entirely the problem of associating a Hermitian operator
with the parameter. We illustrate the general formalism, first, with
nonrelativistic uncertainty relations for spatial displacement and momentum,
harmonic-oscillator phase and number of quanta, and time and energy and,
second, with Lorentz-invariant uncertainty relations involving the displacement
and Lorentz-rotation parameters of the Poincar\'e group.Comment: 39 pages of text plus one figure; text formatted in LaTe
Broadband teleportation
Quantum teleportation of an unknown broadband electromagnetic field is
investigated. The continuous-variable teleportation protocol by Braunstein and
Kimble [Phys. Rev. Lett. {\bf 80}, 869 (1998)] for teleporting the quantum
state of a single mode of the electromagnetic field is generalized for the case
of a multimode field with finite bandwith. We discuss criteria for
continuous-variable teleportation with various sets of input states and apply
them to the teleportation of broadband fields. We first consider as a set of
input fields (from which an independent state preparer draws the inputs to be
teleported) arbitrary pure Gaussian states with unknown coherent amplitude
(squeezed or coherent states). This set of input states, further restricted to
an alphabet of coherent states, was used in the experiment by Furusawa {\it et
al.} [Science {\bf 282}, 706 (1998)]. It requires unit-gain teleportation for
optimizing the teleportation fidelity. In our broadband scheme, the excess
noise added through unit-gain teleportation due to the finite degree of the
squeezed-state entanglement is just twice the (entanglement) source's squeezing
spectrum for its ``quiet quadrature.'' The teleportation of one half of an
entangled state (two-mode squeezed vacuum state), i.e., ``entanglement
swapping,'' and its verification are optimized under a certain nonunit gain
condition. We will also give a broadband description of this
continuous-variable entanglement swapping based on the single-mode scheme by
van Loock and Braunstein [Phys. Rev. A {\bf 61}, 10302 (2000)]Comment: 27 pages, 7 figures, revised version for publication, Physical Review
A (August 2000); major changes, in parts rewritte
Weak force detection with superposed coherent states
We investigate the utility of non classical states of simple harmonic
oscillators, particularly a superposition of coherent states, for sensitive
force detection. We find that like squeezed states a superposition of coherent
states allows displacement measurements at the Heisenberg limit. Entangling
many superpositions of coherent states offers a significant advantage over a
single mode superposition states with the same mean photon number.Comment: 6 pages, no figures: New section added on entangled resources.
Changes to discussions and conclusio
Non-Gaussian two-mode squeezing and continuous variable entanglement of linearly and circularly polarized light beams interacting with cold atoms
We investigate how entangled coherent states and superpositions of low
intensity coherent states of non-Gaussian nature can be generated via
non-resonant interaction between either two linearly or circularly polarized
field modes and an ensemble of X-like four-level atoms placed in an optical
cavity. We compare our results to recent experimental observations and argue
that the non-Gaussian structure of the field states may be present in those
systems.Comment: 10 pages, 7 figures, replaced with final published versio
Gene-network inference by message passing
The inference of gene-regulatory processes from gene-expression data belongs
to the major challenges of computational systems biology. Here we address the
problem from a statistical-physics perspective and develop a message-passing
algorithm which is able to infer sparse, directed and combinatorial regulatory
mechanisms. Using the replica technique, the algorithmic performance can be
characterized analytically for artificially generated data. The algorithm is
applied to genome-wide expression data of baker's yeast under various
environmental conditions. We find clear cases of combinatorial control, and
enrichment in common functional annotations of regulated genes and their
regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics
2007, Kyot
Perceived internal depth in rotating and translating objects
Previous research has indicated that observers use differences between velocities and ratios of velocities to judge the depth within a moving object, although depth cannot in general be determined from these quantities. In four experiments we examined the relative effects of velocity difference and velocity ratio on judged depth within a transparent object that was rotating about a vertical axis and translating horizontally, examined the effects of the velocity difference for pure rotations and pure translations, and examined the effect of the velocity difference for objects that varied in simulated internal depth. Both the velocity difference and the velocity ratio affected judged depth, with difference having the larger effect. The effect of velocity difference was greater for pure rotations than for pure translations. Simulated depth did not affect judged depth unless there was a corresponding change in the projected width of the object. Observers appear to use the velocity difference, the velocity ratio, and the projected width of the object heuristically to judge internal object depth, rather than using image information from which relative depth could potentially be recovered
Gene-network inference by message passing
The inference of gene-regulatory processes from gene-expression data belongs
to the major challenges of computational systems biology. Here we address the
problem from a statistical-physics perspective and develop a message-passing
algorithm which is able to infer sparse, directed and combinatorial regulatory
mechanisms. Using the replica technique, the algorithmic performance can be
characterized analytically for artificially generated data. The algorithm is
applied to genome-wide expression data of baker's yeast under various
environmental conditions. We find clear cases of combinatorial control, and
enrichment in common functional annotations of regulated genes and their
regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics
2007, Kyot
Effect of Disorder Strength on Optimal Paths in Complex Networks
We study the transition between the strong and weak disorder regimes in the
scaling properties of the average optimal path in a disordered
Erd\H{o}s-R\'enyi (ER) random network and scale-free (SF) network. Each link
is associated with a weight , where is a
random number taken from a uniform distribution between 0 and 1 and the
parameter controls the strength of the disorder. We find that for any
finite , there is a crossover network size at which the transition
occurs. For the scaling behavior of is in the
strong disorder regime, with for ER networks and
for SF networks with , and for SF networks with . For the scaling behavior is in the weak disorder regime, with for ER networks and SF networks with . In order to
study the transition we propose a measure which indicates how close or far the
disordered network is from the limit of strong disorder. We propose a scaling
ansatz for this measure and demonstrate its validity. We proceed to derive the
scaling relation between and . We find that for ER
networks and for SF networks with , and for SF networks with .Comment: 6 pages, 6 figures. submitted to Phys. Rev.
- …