17 research outputs found
Removal of a single photon by adaptive absorption
We present a method to remove, using only linear optics, exactly one photon
from a field-mode. This is achieved by putting the system in contact with an
absorbing environment which is under continuous monitoring. A feedback
mechanism then decouples the system from the environment as soon as the first
photon is absorbed. We propose a possible scheme to implement this process and
provide the theoretical tools to describe it
Adiabatic Elimination in Compound Quantum Systems with Feedback
Feedback in compound quantum systems is effected by using the output from one
sub-system (``the system'') to control the evolution of a second sub-system
(``the ancilla'') which is reversibly coupled to the system. In the limit where
the ancilla responds to fluctuations on a much shorter time scale than does the
system, we show that it can be adiabatically eliminated, yielding a master
equation for the system alone. This is very significant as it decreases the
necessary basis size for numerical simulation and allows the effect of the
ancilla to be understood more easily. We consider two types of ancilla: a
two-level ancilla (e.g. a two-level atom) and an infinite-level ancilla (e.g.
an optical mode). For each, we consider two forms of feedback: coherent (for
which a quantum mechanical description of the feedback loop is required) and
incoherent (for which a classical description is sufficient). We test the
master equations we obtain using numerical simulation of the full dynamics of
the compound system. For the system (a parametric oscillator) and feedback
(intensity-dependent detuning) we choose, good agreement is found in the limit
of heavy damping of the ancilla. We discuss the relation of our work to
previous work on feedback in compound quantum systems, and also to previous
work on adiabatic elimination in general.Comment: 18 pages, 12 figures including two subplots as jpeg attachment
Causality in quantum teleportation: information extraction and noise effects in entanglement distribution
Quantum teleportation is possible because entanglement allows a definition of
precise correlations between the non-commuting properties of a local system and
corresponding non-commuting properties of a remote system. In this paper, the
exact causality achieved by maximal entanglement is analyzed and the results
are applied to the transfer of effects acting on the entanglement distribution
channels to the teleported output state. In particular, it is shown how
measurements performed on the entangled system distributed to the sender
provide information on the teleported state while transferring the
corresponding back-action to the teleported quantum state.Comment: 14 pages, including three figures, discussion of fidelity adde
Decoherence control in microwave cavities
We present a scheme able to protect the quantum states of a cavity mode
against the decohering effects of photon loss. The scheme preserves quantum
states with a definite parity, and improves previous proposals for decoherence
control in cavities. It is implemented by sending single atoms, one by one,
through the cavity. The atomic state gets first correlated to the photon number
parity. The wrong parity results in an atom in the upper state. The atom in
this state is then used to inject a photon in the mode via adiabatic transfer,
correcting the field parity. By solving numerically the exact master equation
of the system, we show that the protection of simple quantum states could be
experimentally demonstrated using presently available experimental apparatus.Comment: 13 pages, RevTeX, 8 figure
Homodyne Bell's inequalities for entangled mesoscopic superpositions
We present a scheme for demonstrating violation of Bell's inequalities using
a spin-1/2 system entangled with a pair of classically distinguishable wave
packets in a harmonic potential. In the optical domain, such wave packets can
be represented by coherent states of a single light mode. The proposed scheme
involves standard spin-1/2 projections and measurements of the position and the
momentum of the harmonic oscillator system, which for a light mode can be
realized by means of homodyne detection. We discuss effects of imperfections,
including non-unit efficiency of the homodyne detector, and point out a close
link between the visibility of interference and violation of Bell's
inequalities in the described scheme.Comment: 6 pages, 3 figures. Extended version, journal reference adde
Relativistic quantum clocks
The conflict between quantum theory and the theory of relativity is
exemplified in their treatment of time. We examine the ways in which their
conceptions differ, and describe a semiclassical clock model combining elements
of both theories. The results obtained with this clock model in flat spacetime
are reviewed, and the problem of generalizing the model to curved spacetime is
discussed, before briefly describing an experimental setup which could be used
to test of the model. Taking an operationalist view, where time is that which
is measured by a clock, we discuss the conclusions that can be drawn from these
results, and what clues they contain for a full quantum relativistic theory of
time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for
"Workshop on Time in Physics" Zurich 201
Recommended from our members
Fossil Energy Environmental Project. Annual report, FY 1977
During the past year the Fossil Energy Environmental Project has provided technical support to the Fossil Energy Program Administration of the Department of Energy (DOE/FE) in its coal conversion demonstration program. Work was focused in four principal areas: environmental assessment; guidance to demonstration plant contractors regarding environmental obligations; experimental studies of stored solids from coal conversion; and interactive assistance to contractors regarding environmental monitoring needs. Four major documents were prepared, two guidelines for contractors and two environmental analyses. An experimental program using both laboratory and field-scale testing was initiated to study leachates from both stored coal and coal conversion wastes. Technical assistance tasks early in the year consisted primarily of quick-response activities. However, after initial demonstration plant contracts were signed, advisory activities increased--the latter part of the year saw the start of frequent interactions with contractors regarding environmental monitoring of coal conversion demonstration-plant sites