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Adiabatic elimination in compound quantum systems with feedback
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Feedback in compound quantum systems is effected by using the output from one subsystem~‘‘the system’’!
to control the evolution of a second subsystem~‘‘the ancilla’’ ! that is reversibly coupled to the system. In the
limit where the ancilla responds to fluctuations on a much shorter time scale than does the system, we show
that it can be adiabatically eliminated, yielding a master equation for the system alone. This is very significant
as it decreases the necessary basis size for numerical simulation and allows the effect of the ancilla to be
understood more easily. We consider two types of ancilla: a two-level ancilla~e.g., a two-level atom! and an
infinite-level ancilla~e.g., an optical mode!. For each, we consider two forms of feedback: coherent~for which
a quantum-mechanical description of the feedback loop is required! and incoherent~for which a classical
description is sufficient!. We test the master equations we obtain using numerical simulation of the full
dynamics of the compound system. For the system~a parametric oscillator! and feedback~intensity-dependent
detuning! we choose, good agreement is found in the limit of heavy damping of the ancilla. We discuss the
relation of our work to previous work on feedback in compound quantum systems, and also to previous work
on adiabatic elimination in general.

DOI: 10.1103/PhysRevA.63.013803 PACS number~s!: 42.50.Dv, 42.50.Ct, 42.65.Yj, 42.50.Vk
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I. INTRODUCTION

The quantum theory of continuous Markovian feedback
now well understood@1–4#. Continuous feedback arises in
situation where a system continuously interacts with its
vironment, and the environment is deliberately enginee
such that the influence of the system on the environment
back on the system at a later time. This can be describe
a Markovian process when~a! the natural coupling of the
system to the environment is approximately Markovian, a
~b! the effective time delay in the feedback process is ne
gible compared to any relevant time scale of the system
the Markovian approximation is appropriate, this leads to
great simplification that the system evolution may be
scribed by a master equation of the Lindblad form@5#.

It is possible to divide quantum feedback into two categ
ries, which we may call coherent and incoherent, followi
Lloyd @6# ~but without being limited by his definitions!. In
the latter case of incoherent feedback, it is not necessar
use a quantum description of the entire feedback lo
Rather, at some point, it is permissible to change from
quantum to a classical description by invoking a measu
ment step. In a quantum optical context, this correspond
electro-optical feedback@4# where a photocurrent derive
from detecting the light radiated by the system is used
control electro-optical devices that change the behavio
the system. In the former case of coherent feedback, a q
tum description of the entire feedback loop is necessary.
quantum optical context, this corresponds to all-optical fe
back@4# in which the light radiated by the system is reflect
so that in interacts with the system again, perhaps via s
other system.

Continuous quantum feedback may be non-Markovian
a number of reasons. The coupling to the environment m
be non-Markovian. The time delay in the feedback loop m
be non-negligible. The feedback may act via a second
1050-2947/2000/63~1!/013803~14!/$15.00 63 0138
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tem, the ancilla. In this paper, we are concerned with the
possibility. This is of interest because it arises very natura
in quantum optics in both all-optical@4# and electro-optical
@7# contexts. In principle, this sort of feedback can be d
scribed as a Markovian process in the larger state spac
the system plus ancilla. In practice, this procedure is of
not useful, because of the critical wordlarger in the preced-
ing sentence. If the required basis sizes of the system
ancilla areN andM, respectively, then the Liouvillian for the
compound system has of orderN4M4 elements. Clearly for
M large, this is much larger than a Liouvillian for the syste
alone.

Consequently, it would be an advantage to obtain a ma
equation for the system alone, without the ancilla. This
possible if the ancilla can be adiabatically eliminated, that
if the ancilla has a decay rate much faster than any relev
system rate, so that it is always in a steady state determ
by the system state. It is the purpose of this paper to de
mine numerically the conditions under which this is possib
and to derive the resultant master equations under those
ditions, for a variety of general feedback systems.

Previous work in this area has left the situation somew
confused. Wiseman and Milburn@4# considered all-optical
feedback via an ancilla system, and adiabatically elimina
the ancilla. This was shown to be equivalent to elect
optical feedback for quadrature feedback. However, for
tensity feedback it was the same only to second order in
feedback strength. Moreover, the master equation derived~to
second order! was not of the Lindblad form.

Slosser and Milburn@7# considered electro-optic feedbac
of the photocurrent from the idler mode of a nondegener
parametric oscillator onto the pump mode. Here the sig
and idler mode formed the system and the pump mode
the ancilla. The procedure they adopted for deriving a ma
equation for the system was as follows. They expanded
feedback master equation for the compound system tofirst
©2000 The American Physical Society03-1
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order in the feedback strength, adiabatically eliminated
pump mode, but the final result presented for the sys
master equation contained first- andsecond-order terms. As
in Ref. @4#, this second-order master equation was not of
Lindblad form. Furthermore, the steady-state field avera
were calculated using an unstatedall-order master equation
~which was of the Lindblad form!. There are other problem
with this paper@8#, but they are not relevant to the prese
work.

In this work, we show how adiabatic elimination can
done rigorously in compound quantum feedback syste
such as those of Refs.@4,7#. As well as being of interest in
the field of quantum feedback, the methods we use for a
batic elimination are of more general interest. While ad
batic elimination of an ancilla mode that is linearly coupl
to the system is well understood, adiabatic elimination wit
nonlinear~e.g., proportional to the intensity! coupling is not.
In particular, the methods we use here put the results
tained by Doherty and co-workers@10# on the motion of an
atom coupled to a damped optical cavity mode on a m
rigorous footing.

This paper is organized as follows. In Sec. II, we consi
simple direct-detection feedback, and the four types of an
gous feedback in compound systems: electro-optic feedb
via a two-level atom, electro-optic feedback via an opti
mode, all-optical feedback via a two-level atom, and a
optical feedback via a mode. We show that in all four ca
it is possible to eliminate the ancilla under suitable con
tions, giving a master equation for the system alone. In S
III, we compare the stationary state of these master equat
with the solution of the full dynamics of the compound sy
tems. For this test we choose the free dynamics of the sys
to be that of a below-threshold parametric oscillator,
quantity being fed back to be the intensity, and the quan
being controlled by the feedback to be the detuning. We a
compare the results of all five feedback mechanisms w
that caused by an analogous ‘‘reversible feedback’’ gen
ated by ax (3) nonlinearity. In Sec. IV, we conclude with
discussion of our results.

II. ADIABATIC ELIMINATION

A. Simple feedback

In order to discern how the dynamics of a system
affected by a feedback loop that includes an ancilla, it
useful to know the master equation for simple feedback.
simple feedback it is meant that the measurement res
based on continuous observation of a source system, are
mediately used to alter the evolution of the source with
the involvement of any other quantum system. To use
example from quantum optics, a photodetector may regi
photon arrivals from a cavity at discrete times and, at th
times, some specified change to the system may be m
~see Fig. 1!. Types of changes include altering the optic
path length or damping rate of the cavity. In the remainde
this paper, we will often use quantum optics terminology,
it should be remembered that the theory is not restricted
optical physics.
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The most general form of the simple feedback mas
equation has been derived by Wiseman@3#. Consider a sys-
tem with HamiltonianH and some dissipation at rateg and
with lowering operatorc. With \ set equal to unity, the mas
ter equation is

ṙ~ t !52 i @H,r#1gD@c#r, ~2.1!

where the Lindblad@5# superoperator is

D@c#5J@c#2A@c#, ~2.2!

where for arbitrary operatorsA andB,

J@A#B5ABA†, A@A#B5 1
2 $A†A,B%. ~2.3!

It is the dissipation that allows for continuous observatio
the result of which is a currentI (t). In this paper we are
concerned with what is known as direct detection, where

I ~ t !5dN~ t !/dt, ~2.4!

wheredN(t) is the point process~the increment in the num
ber of photons counted! defined by

@dN~ t !#25dN~ t !,

E@dN~ t !#5g dt Tr@c†crc~ t !#. ~2.5!

Here E denotes a classically probabilistic expectation va
while thec subscript denotes that the staterc is conditioned
on the previous measurement results. We have assumed
the detection is perfectly efficient; the generalization to in
ficient detectors is trivial@3#.

Simple feedback arises from adding a Hamiltonian to
system evolution of the form

H fb~ t !5I ~ t !Z, ~2.6!

whereZ is a Hermitian system operator. Taking into accou
the singularity ofI (t), and the fact that the feedback must a
after the measurement, it is possible to derive a master e
tion for the system with feedback, averaging over all reali
tions of the stochastic measurement recordI (t). The result is

ṙ52 i @H,r#1gD@e2 iZc#r. ~2.7!

FIG. 1. Schematic representation of simple feedback. The
tem is taken to be a single-mode optical cavity, with annihilati
operatora and damping rateg. All subsequent figures will also us
an optical cavity for the system.
3-2
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To compare this master equation with those obtained late
is useful to expand the exponentials to third order,

ṙ.2 i @H,r#1gD@c#r1gH C@Z#1
1

2
~C@Z# !2

1
1

6
~C@Z# !3JJ@c#r, ~2.8!

whereC@A#B52 i @A,B# for arbitrary operatorsA andB.
The derivation outlined above for the feedback mas

equation treats the photocurrentI (t) as a classical stochast
process, which causes the conditioned system staterc to un-
dergo stochastic evolution~known as a quantum trajector
@11#!. There is an alternative derivation which treats the p
tocurrentI (t) as an operator. This derivation works in th
Heisenberg picture, where the system evolution is descr
by stochastic operator differential equations known as qu
tum Langevin equations@12#. This method is useful for adia
batic elimination, so we will briefly review its features.

Quantum Langevin equations~QLE! are constructed with-
out using the concept of measurement. The dissipative e
lution of Eq. ~2.1! can be derived in a quantum optical co
text from a linear coupling~in a rotating frame and with the
rotating-wave approximation!

V5 iAg@v†~ t !c2c†v~ t !# ~2.9!

between the system and a bath of harmonic oscillators. H
v(t) is the bath annihilation operator at the point at which
interacts with the system. Just before this point, the bath i
input vacuum, with field operatorv in(t) satisfying@12#

@v in~ t !,v in
† ~ t8!#5d~ t2t8!, ~2.10!

and has all normally ordered moments vanishing. Just a
this point, the bath is an output~nonvacuum! with field op-
erator@12#

vout~ t !5v in~ t !1Agc~ t !. ~2.11!

The photocurrent operatorI (t) is simply the intensity of the
output field

I ~ t !5vout
† ~ t !vout~ t !. ~2.12!

Adding together the evolution due toH, V, andH fb , and
again noting that the feedback must act after the interact
one can derive the following quantum Langevin equation
an arbitrary system operators @3#:

ds5@v in
† 1Agc†#~eiZse2 iZ2s!@v in1Agc#dt1g~c†sc

2 1
2 sc†c2 1

2 c†cs!dt2Ag@dVin
† c2c†dVin ,s#

1 i @H,s#dt, ~2.13!

where dVin5v indt. All operators have time argumentt.
When the expectation value of this equation is taken,
equation is obtained that can be converted to the ma
equation~2.7! for simple feedback.
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B. Electro-optic feedback via an atom

The simplest possible ancilla system is a two-level at
~TLA !. In this section we consider incoherent~electro-optic!
feedback via this ancilla. The output from the system
monitored by direct detection, the results of which are us
to affect the evolution of the TLA that is coupled to th
system, as shown in Fig. 2. The system and ancilla are
sumed to have approximately the same resonant freque
The most natural form of feedback involves flipping the st
of the TLA whenever the photodetector monitoring the s
tem makes a detection. This can be achieved with a feedb
Hamiltonian of the form

H fb5
p

2
sxI ~ t !. ~2.14!

Here sx is the usual Pauli spin matrix for describing a
atomic state@13#. It could be realized experimentally by ver
briefly driving the atom with a pulse of on-resonance rad
tion ~a ‘‘p ’’ pulse! which will flip it from the ground to the
excited state.

With this form of feedback, the obvious coupling of th
atom to the system to consider is one proportional to
excited-state population operators†s. Here s5(sx
2 isy)/2 is the atomic lowering operator. Specifically,

Hcoupling5s†sK, ~2.15!

where K is an arbitrary Hermitian system operator. Wh
feedback onto the atom in the ground state occurs, the u
state population jumps to a value of 1 and then decays aw
due to coupling to the continuum of electromagnetic fie
modes. In other words,s†s will tend to follow the photocur-
rent. Thus there is a strong similarity to simple feedback, iK
is chosen to be some scalar multiple ofZ.

It is not hard to generalize Eq.~2.7! to include the TLA
ancilla

Ẇ52 i @Hsystem1s†sK,W#1DFexpS 2 i
p

2
sxD cGW

1GD@s#W, ~2.16!

whereG is the damping rate of the atom andW is the density
matrix for the compound system. The damping rateg of the
system has been set equal to unity without loss of genera

FIG. 2. Schematic representation of direct detection feedb
onto a TLA that is coupled back to the system. The system damp
rate has now been set equal to unity and the TLA damping rate iG.
3-3
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In general, the above master equation cannot be part
traced over the atom’s state in order to obtain a master e
tion for rsystem(t). The obvious exception to this is the ca
whereK50 and the system is unaffected by the atom. Ho
ever, if the atom reacts very quickly to the feedback a
returns to its initial state before more feedback arrives~the
next photodetection!, then this well-defined behavior can b
built into a master equation for the system alone. In esse
the atom’s state is approximated by its equilibrium va
with respect to the instantaneous state of the system
operators are replaced by their steady-state expressions.
is known as adiabatic elimination of the atom.

To proceed with the adiabatic elimination, it is noted th
the total density matrix can be expanded as

W5r0^ u↓&^↓u1r1^ u↓&^↑u1r1
†

^ u↑&^↓u1r2^ u↑&^↑u,
~2.17!

where ther ’s exist in the system subspace. All possib
states of the atom have been included (u↑& and ^↓u corre-
spond to the excited and ground state, respectively!. This
approach is particularly appropriate because of the small
sis involved. If the above expression forW is substituted into
the master equation, then the atom operators can act on
states of the atom. If the coefficients of the various ortho
nal states are equated, the following equations for ther ’s are
obtained~the subscript ‘‘s’’ indicates the system!:

ṙ05C@Hs#r01J@c#r22A@c#r01Gr2 , ~2.18!

ṙ15C@Hs#r11 ir1K1J@c#r1
†2A@c#r12

G

2
r1 ,

~2.19!

ṙ25C@Hs1K#r21J@c#r02A@c#r22Gr2 . ~2.20!

By tracing Eq. ~2.17! over the atom, the reduced densi
operator for the system is

rs5r01r2 ~2.21!

and its evolution equation is found to be

ṙs52 i @Hs ,rs#1D@c#rs2 i @K,r2#. ~2.22!

Without some approximation, this is as far as the elim
nation of the atom can be taken. It is not a master equa
due to the dependence uponr2. As discussed previously, th
limit in which the atom returns very quickly to the groun
state after feedback needs to be considered. Because
probability for photodetection in any infinitesimal time p
riod scales as the size of the period, the atom is in the gro
state almost all the time. The approximation thatrs'r0 is
therefore made. From Eq.~2.20!, it can be seen that ifG is
large compared to the other coefficients ofr2 ~except possi-
bly K), then fluctuations in this operator will be quickl
damped out andṙ2 can then be set to zero. The effect ofK is
to cause rotation ofr2 but not to affect its size. The physica
picture already described is consistent withG being large.
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AssumingK;G@1 ~whereK;G means that the operatorK
scales likeG), we find the steady state ofr2 to be

r25~G2C@K# !21J@c#r0 . ~2.23!

When this is substituted into Eq.~2.22!, the master equation
for the system alone is obtained. WithZ5K/G, it is

ṙs5$C@Hs#1D@c#1C@Z#~12C@Z# !21J@c#%rs .
~2.24!

It is not immediately clear that this master equation is of
Lindblad form @5#. However, in Appendix A 1 it is shown
that it can be written as

ṙs52 i @Hs ,rs#1E
0

`

dq e2qD@e2 iqZc#rs . ~2.25!

Some feeling for the nature of the master equation can
obtained by an expansion to third order inZ ~a small feed-
back approximation!. This gives~subscripts dropped!

ṙ.C@H#r1D@c#r1$C@Z#1~C@Z# !21~C@Z# !3%J@c#r.

~2.26!

These terms can be compared to the third-order expansio
Eq. ~2.8!, with g51. The difference in second- and highe
order terms means that for large feedback the two syst
will be significantly different.

C. Electro-optic feedback via a mode

The more challenging task of adiabatically eliminating
ancilla that has an infinite number of basis states is n
considered. Optically, this could correspond to a single-m
cavity. The method of expanding the compound density m
trix in terms of the lower number states of the ancilla is n
appropriate due to the type of feedback that is utilized.
stead we use quantum Langevin equations, which place
such restriction on the excitation of the ancilla.

The output field from the system is once again contin
ously monitored using direct detection~see Fig. 3!. We take
the feedback to be linear driving of the ancilla cavity. It
described by the feedback Hamiltonian

H fb5
e

2
~2 ib1 ib†!I ~ t !, ~2.27!

whereb is the annihilation operator for the cavity,e repre-
sents the amplitude of the coherent driving field, andI (t) is
the operator for the photocurrent output from the syste
This causes a jump in amplitude of the ancilla cavity of s
e/2 when there is a photodetection.

To provide a feedback circuit that is classically equivale
to simple feedback in the limit of large damping of the ca
ity, the following choice of coupling is made:

V5
K

2
~b1b†!. ~2.28!
3-4
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The equivalence is due tob following the photocurrent and
also, an appropriate choice ofK.

The total master equation is

Ẇ52 i FK

2
~b1b†!1Hs ,WG1D@ee(2b1b†)/2c#W

1GD@b#W, ~2.29!

where once againW is the density matrix describing th
compound system and the damping of the system has
set equal to unity. The damping rate of the ancilla cavity
given by G. The quantum Langevin equation that corr
sponds to this master equation can be found by extending
~2.13!. The result for an arbitrary operatorr from either sub-
system is

dr5vout
† @ee(b2b†)/2re2e(b2b†)/22r #voutdt1D@c†#r dt

2@dVin
† c2c†dVin ,r #1GD@b†#r dt2AG@dUin

† b

2b†dUin ,r #1 i FK

2
~b1b†!1Hs ,r Gdt, ~2.30!

where dUin5uindt. The vacuum field input for the driven
cavity, uin , has the same properties asv in .

To adiabatically eliminate the cavity, in the limit of heav
damping, a QLE will first be determined for a system ope
tor, s. Equation~2.30! is greatly simplified, ass commutes
with all driven cavity operators, to give

ds5D@c†#s dt2@dVin
† c2c†dVin ,s#

1 i FK

2
~b1b†!1Hs ,sGdt. ~2.31!

From this it is evident that an expression forb is required if
a master equation for the system alone is to be derived.
QLE for b is

FIG. 3. Schematic representation of direct detection feedb
onto an optical cavity that is coupled back to the system. The
cilla cavity has annihilation operatorb and damping rateG.
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ḃ52 i
K

2
2

G

2
b2AGuin1

e

2
vout

† vout, ~2.32!

showing thatb follows the photocurrent as expected. F
largeG, the fluctuations inb due to system operators will b
quickly damped out. However, the stochastic terms have
infinite bandwidth, so that it is not strictly possible to sla
an operator that only responds to a finite bandwidth,G, to
these fluctuations. Although this problem can be sid
stepped@4#, it will prove advantageous to use the followin
equilibrium value ofb:

b52
iK

G
2E

0

`

dte2Gt/2FAGuin~ t2t!2
e

2
vout

† vout~ t2t!G .
~2.33!

The integral serves to determine the present contributionb
from the stochastic terms at timet2t. This contribution falls
off at rateG/2, the amplitude decay rate for the ancilla ca
ity. The term that is not under the integral is not stochas
and is therefore slowly varying compared to the high
damped cavity operators. Thus,b can follow the evolution of
K to a very good approximation.

To simplify matters, the Langevin equation fors will now
be rearranged before substitution so thatuin will annihilate
the vacuum when the expectation value is taken. This gi

ds5D@c†#s dt2@dVin
† c2c†dVin ,s#1

i

2
~b†@K,s#

1@K,s#b!dt1 i @Hs ,s#dt. ~2.34!

This is valid asb andb† commute with system operators. W
cannot move the stochastic partv in(t) of vout(t2t) through
the system commutator term to annihilate on the vacuu
However, it is possible to move the photocurrent itself
time t2t as it commutes@12#. If the integrals that will an-
nihilate on the vacuum when the trace over the bath is ta
are ignored, then we are left with

ṡ5
i e

2
@K,s#E

0

`

dte2Gt/2I ~ t2t!2
1

2G
@K,@K,s##1D@c†#s

2@v in
† c2c†v in ,s#1 i @Hs ,s#. ~2.35!

If the limit G→` is taken, the integral reduces to 2I (t)/G.
The resultant equation forṡ is an implicit equation as it was
derived by idealizing the properties of the cavity and en
ronment@14#. An explicit equation is now required.

The term that needs to be treated in Eq.~2.35! can be
written as

ṡimplicit52
eIC@K#s

G
. ~2.36!

This gives an explicit increment of the form@3,15#

dsexplicit5dN$exp~2eC@K#/G!21%s, ~2.37!

k
n-
3-5
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where dN5Idt5dN25vout
† voutdt. Remembering that the

photocurrent is actually evaluated at a slightly earlier ti
than the system operators allowsvout to be moved to the
right of the expression. If we setZ5eK/G, in order that our
equations can be compared to simple feedback, then the
Langevin equation is

ds5@v in
† 1c†#~eiZse2 iZ2s!@v in1c#dt2

G

2e2
@Z,@Z,s##dt

1D@c†#s dt2@dVin
† c2c†dVin ,s#1 i @Hs ,s#dt. ~2.38!

When the expectation value is taken, the stochastic part
nihilates on the vacuum and the following master equatio
obtained:

ṙ52 i @Hs ,r#1D@e2 iZc#r1
G

e2
D@Z#r. ~2.39!

The only difference from simple feedback is the third ter
This is a term of second order in the feedback operatoZ,
and represents a type of noise that will tend to smooth o
the interesting behavior of the system. Clearly it can be m
arbitrarily small if e is made large enough. A more detaile
discussion of this term is given in Sec. III C.

D. All-optical feedback via an atom

We turn now to coherent or all-optical feedback. On
again we begin with the simplest possible ancilla, a two-le
atom. All-optical feedback via an atom involves the refle
tion of the output field from the system onto the atom, wh
the atom is reversibly coupled to the system. Here, the re
nant frequencies of the two systems are taken to be equ
is different from electro-optic feedback as there is no m
surement step; the light is just reflected around a loop w
the use of mirrors~see Fig. 4!. The theoretical description o
such systems was developed largely by Carmichael@16# and
Gardiner@17# and has been termedcascaded open system
theory. If linear bath-system couplings are assumed, then
compound master equation is

FIG. 4. Schematic representation of all-optical feedback on
TLA that is coupled back to the system.
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Ẇ52 i @Hs1V,W#1D@c#W1GD@s#W

1AG~@cW,s†#1@s,Wc†# !. ~2.40!

The system damping has been set equal to unity as usua
G is the damping rate of the atom.

In order to investigate the degree to which all-optic
feedback can replicate electro-optical simple feedback
coupling is chosen that is linear in the excited-state popu
tion of the atom. We expect this operator to follow the outp
photocurrent from the system. That is, we assume a coup
identical to that in Sec. II B@Eq. ~2.15!#. Making the expan-
sion of Eq.~2.17! gives the following for ther ’s

ṙ05C@Hs#r01D@c#r01Gr21AG~cr11r1c†!,
~2.41!

ṙ15C@Hs#r11D@c#r11AG~r22r0!c†1 ir1K2
G

2
r1 ,

~2.42!

ṙ25C@Hs#r21D@c#r22AG~cr11r1c†!2 i @K,r2#2Gr2 .

~2.43!

The above equations lead to an equation of motion for
system density operator of

ṙ5C@Hs#r1D@c#r2 i @K,r2#, ~2.44!

which is the same as Eq.~2.22!. To find an expression forr2,
the normal procedure of takingG large compared toC@Hs# is
performed. Thus,r1 can be slaved to system operators,r0
andr2. Now as we only require a master equation that giv
the leading-order effect inG21 of the ancilla on the system
r2 can be set equal to zero in ther1 equation, which is the
approximationr0'r. This is valid asr2;r0 /G. By substi-
tuting the slaved expression forr1 into that forr2, we find
after simplification

r25
4

G
JF S 11

2iK

G D 21

cGr0 . ~2.45!

This can now be substituted into Eq.~2.44! to obtain a mas-
ter equation. WritingZ54K/G, we have

ṙ5C@Hs#r1D@c#r1C@Z#JF S 11
Zi

2 D 21

cGr,

~2.46!

which is the same as the simple feedback Eq.~2.8! to second
order. The third-order term is

1

4
C@Z#~J@Z#22A@Z# !J@c#r. ~2.47!

Again it is not obvious that Eq.~2.46! is in the Lindblad
form, but it is shown in Appendix that it can be written as

ṙ52 i @Hs ,r#1DFexpS 22i arctan
Z

2D cGr. ~2.48!

a
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E. All-optical feedback via a mode

The final compound system that will be considered
volves the output field from a system being reflected onto
optical cavity that is coupled back to the system~see Fig. 5!.
A Faraday isolator~comprised of a Faraday rotator and
polarization-dependent beam splitter! prevents reflected ligh
from the cavity returning to the system. The only differen
in the total master equation from the preceding section is
replacement of the atom lowering operators with the anni-
hilation operatorb. Thus a coupling of the formV5Kb†b is
considered.

The derivation of a master equation for the system al
follows similar lines to that of Sec. II C. The QLE for a
arbitrary operator is@17#

dr51 i @Hs1V,r #dt1D@c†#r dt2@dVin
† c2c†dVin ,r #

1GD@b†#r dt2AG@dVin
† b2b†dVin ,r #1AG~b†rc

1c†rb2rb†c2c†br !dt. ~2.49!

For a system operator this becomes

ds5D@c†#s dt2@dVin
† c2c†dVin ,s#1 i @Hs1Kb†b,s#dt.

~2.50!

The next step is to find an equation forb. The QLE that
governs it is

db52S G

2
b1AGv in1AGc1 iKb Ddt. ~2.51!

This justifies our initial presumption that the cavity phot
number would follow the photocurrent. ForG large, it is
possible to slaveb to the system operators and to form
integral expression for the contribution from the stochas
term, as in Sec. II C. The result is

FIG. 5. Schematic representation of all-optical feedback on
single-mode cavity that is coupled back to the system. A Fara
rotator ~FR! and a polarization-dependent beam splitter~PBS! are
included in the feedback loop.
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dt e2Gt(112iK /G)/2v in~ t2t!. ~2.52!

The same trick of rearranging the QLE for the system ope
tor is again used so that, in this case, all of the integral te
annihilate. We set

i @Kb†b,s#dt5 ib†@K,s#b dt. ~2.53!

Substituting into this the expression forb andb† gives four
terms, only one of which is nonzero when the trace over
bath is taken. This term is

4ic†

G S 12
2iK

G D 21

@K,s#S 11
2iK

G D 21

c. ~2.54!

In effect, an implicit equation has been derived that has
contribution from stochastic operators, resulting in there
ing no need for an implicit/explicit distinction. It is now
possible to turn the equation fords into a master equation fo
the system. When this is done, we arrive at the same resu
Eq. ~2.46!. The conclusion is that to first order inG21, the
cavity has the same effect on the system that the atom d
when included in an all-optical feedback loop.

In hindsight, this is what we should have expected, as
the limit of large damping only the lowest number states
the cavity will be occupied with significant probability. On
could therefore have expanded the total density matrix an
gously to the TLA system to obtain the same equations
mediately. This is in contrast to the electro-optic feedba
where higher number states are essential to the descriptio
the cavity.

III. COMPARISON WITH EXACT RESULTS

We have shown that in principle it is possible to consid
a variety of different sorts of feedback in compound quant
systems, and to adiabatically eliminate the ancillary syst
to arrive at master equations for the system of interest alo
These master equations should be exact in the limit that
ancilla is damped infinitely faster than the system. In pr
tice, this will never be the case, so it is an interesting qu
tion to find out under what conditions the equations are va
This can be done by simulating the full master equation
the compound system and comparing to the results of
master equation for the system alone.

To make such a comparison requires specifying the fe
back operator,Z, and the system Hamiltonian,Hs . Once this
is done, a comparison can be made by looking at the stat
ary solutions of the respective master equations. While
could be criticized as not being a complete test, it has
advantages of definiteness and ease of calculation~in some
cases at least!. Furthermore, we choose a system and Ha
iltonians (Hs andZ) such that the stationary solutions ha
enough structure for the comparison to be interesting. T
comparison is both quantitative and qualitative, with the u
of the Bures distance@18# as a measure of the differenc
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P. WARSZAWSKI AND H. M. WISEMAN PHYSICAL REVIEW A63 013803
between the state matrices and the Wigner function@19# to
illustrate them.

We take the system to be a damped single-mode op
cavity. That is, we choosec5a, an annihilation operato
satisfying@a,a†#51. We choose a system Hamiltonian~in a
rotating frame! of

H52
il

4
@a22~a†!2#. ~3.1!

This describes a degenerate parametric amplifier~‘‘two-
photon’’ driving!, which can be realized by driving an intra
cavity crystal with ax (2) nonlinearity with light at twice the
resonant frequency. Forl positive, this results in squeezin
of the X2 quadrature of the field inside the cavity, an
stretching of theX1 quadrature. The two quadratures are d
fined in this paper as

X15a1a†, ~3.2!

X252 i ~a2a†!. ~3.3!

Without feedback, the master equation with two-photon dr
ing and damping will have a stationary solution only forl
,1. That is,l is the threshold parameter.

The feedback operator is chosen to be

Z5xa†a. ~3.4!

We can get a feel for the effect of this type of feedback
using Z in the simple feedback Hamiltonian given in E
~2.6!. This represents a detuning of the system cavity prop
tional to the photocurrent. It will cause the master equat
to have a stationary solution regardless ofl, as will be
shown. As the mean photocurrent is equal to the expecta
value of the photon number operator for the system,
Hamiltonian is akin to ax (3) Kerr nonlinearity@19#. In Sec.
III F, a comparison of feedback to such a nonlinearity
made.

A. Simple feedback

The master equation for simple feedback is now

ṙ52
l

4
@a22~a†!2,r#1D@e2 ixa†aa#r. ~3.5!

To simplify the numerical analysis, we choose a single fe
back strength for which simulations will be run. To aid th
decision, the effect of feedback is analyzed. Consider
quantityJ@e2 ixa†a#r. If this is evaluated in the number ba
sis, then we get

^nuJ@~e2 ix!a†a#rum&5~e2 ix!n2mrnm . ~3.6!

Now this particular system has the property thatrnm50 for
un2mu odd as the two-photon driving is the only source
coherences. These coherences exist between elements
un2mu even. Hence, ifx5qp, with q an integer, then the
feedback has no effect. Investigation into the states produ
with a value of feedback close to this revealed that they
01380
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extremely sensitive to any parameter variation. This impl
that it is not a suitable regime for the testing of adiaba
elimination. The most obvious alternative is to choose
maximum feedback regime. It is clear that this is achiev
with x5(q11/2)p. The states produced are much less s
sitive and also have the advantage that, for simple feedb
there is no threshold to the driving strength above which
photon number becomes infinite. For the remainder of
paper, we choosex5p/2.

The two-photon driving strengthl was chosen to be a
large as possible, given the constraints on the maximum
sis size that could be simulated. This amplified the intere
ing effects of feedback. Not surprisingly, the simulations
the compound systems are the most computationally in
sive and provide the upper basis size. It was found that
limit for the system cavity basis size required that phot
numbers above 35 had to be truncated. For an accurate s
lation @20#, this gives a maximum driving strength of abo
l52.2. Where possible, the compound systems were ex
ined in the same regime as simple feedback, but for some
driving threshold ofl51 remains in force, sol50.97 was
then chosen.

The numerical simulations were greatly aided by the u
of the quantum optics toolbox forMATLAB @21#. As noted
above, we gauged whether the adiabatic elimination is v
by investigating the steady states of the systems. The sim
feedback system involved a small enough Liouvillian th
matrix inversion methods can be used. The Wigner funct
of the steady-state density matrix for simple feedback, w
l52.2 and x5p/2, is shown in Fig. 6. A plot withl
50.97 is also included.

B. Electro-optic feedback via an atom

Electro-optic feedback via an atom can be compared
the simple feedback just considered if we insert in Eq.~2.15!

FIG. 6. Wigner functions of the steady states produced w
simple feedback forx5p/2. ~a! and~b! havel52.2, while~c! and
~d! havel50.97. The mesh plots are included to aid the reade
interpretation of the contour plots.
3-8
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ADIABATIC ELIMINATION IN COMPOUND QUANTUM . . . PHYSICAL REVIEW A 63 013803
K5GZ5ga†a, whereg5Gp/2. To test the adiabatic elimi
nation, simulations were run for various values ofG. It is
only for large G that correspondence between the full d
namics and the adiabatically eliminated master equatio
expected. A physical realization of this coupling is a fa
detuned atom in the standing wave of a single-mode ca
@19#. This also introduces a term into the system Hamilton
of the form ds†s, where d is the difference in resonan
frequency of the atom and system. It is of interest to de
mine whether the same results are obtained if the adiab
elimination is done at the same time as, rather than after
large-detuning approximation is made. This is addresse
Appendix B, and the answer is yes.

The full master equation can be found from Eq.~2.16!
using Eq.~3.1! and theK stated here. The reduced dens
matrix for the system at steady state needs to be found. O
again, the Liouvillian is small enough that we can setẆ
50 and solve the equationLW50 for the nontrivial solu-
tion. Simulations were run for values ofG from 1 to 100,
with g altered accordingly. Note that the detuning actua
has no effect on the system dynamics. The reduced den
matrices produced are compared with those found from
~2.24! with the aid of the Bures distance, which gives a me
sure of how distinguishable two mixed states (r1 and r2)
are. The Bures distance is defined as@22#

dBures~r1 ,r2!5A2~12Tr@AAr1r2Ar1# !. ~3.7!

All pairs of density matrices of the same size have a Bu
measure that is mapped onto the real numbers between
andA2. Figure 7 shows how the state produced by the co
pound master equation approaches that produced by the
batically eliminated master equation. AsG is increased, the
Bures distance decreases and the Wigner functions bec

FIG. 7. ~a!, ~b!, and~c! are Wigner functions of the steady stat
produced with electro-optic feedback onto a TLA forx5p/2 and
l52.2.~a! is the adiabatically eliminated state.~b! and~c! represent
the full dynamics withG52 and 20, respectively.~d! shows the
Bures distance between the adiabatically eliminated state and
state produced with the full dynamics asG increases.
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more similar to the adiabatic state. This shows that the a
batic elimination is valid in this system for surprisingly sma
values ofG.

A comparison of the stationary Wigner functions pr
duced here with those of simple feedback reveals that th
exist vast differences between these feedback schemes.
is not surprising as it is only to first order inZ that the
equations are the same, and the parameters we have ch
correspond toZ quite large. The most obvious visual diffe
ences include the presence of a shearing effect and the
of reflective symmetry in theX2 quadrature.

C. Electro-optic feedback via a mode

In Sec. II C, electro-optic feedback via a mode was co
sidered. In the limit of the ancilla mode being damped on
time scale small compared to those of the system, Eq.~2.39!
was derived. The feedback operator was set asZ5eK/G so
that we could make a comparison to simple feedback. It
lows that the system coupling operator,K, is of the same
form as the preceding section:K5ga†a. The couplingV
5ga†a(b1b†)/2 could be physically achieved via a fou
wave mixing process in ax (3) material@19#. The fourth field
would have to have the same frequency as the ancilla ca
for conservation of energy.

Now thatZ has been specified, the third term in Eq.~2.39!
can be discussed more explicitly. This can be done by c
sidering the evolution of the phase operator, which has
approximate commutation relation with the number opera
of @F,n#52 i @23#. It can then be shown that this term
causes phase diffusion at a constant rate, implying that
features of the state that are dependent upon a distinct p
are lost. With the notable exception that the photon num
is not directly affected, there are many similarities wi
damping.

For simulation, parameters are chosen so thateg/G
5p/2, l52.2, andG/2e250.001. The last equality main
tains the phase-diffusion term at a small and constant le
This ensures that the same state is always produced by
adiabatically eliminated master equation.

It is worth mentioning how the full dynamics were simu
lated. Due to the jump in the field amplitude of the anci
cavity when a detection on the output of the system is ma
the basis size required for an accurate simulation is la
The possibility of a second detection on the system occur
very soon after the first compounds this. In fact, the com
tational resources available were not sufficient to allow ev
a quantum trajectory simulation@11,24,25# of Eq. ~2.29!. The
solution was to make a unitary transformation to a frame
which the evolution of the driven cavity due to feedback w
separated from that due to quantum noise. That is, the m
amplitude of the field was described classically while t
quantum representation of the noise was maintained.
unitary transformation used was

U5exp@e f ~ t !~b2b†!/2#, ~3.8!

where f (t) is defined by

he
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f ~ t !5E
2`

t

dsexp@2G~ t2s!/2#I ~s!. ~3.9!

Here,I (t) is thec-number stochastic photocurrent. The pri
of a reduced basis size is a time-dependent Liouvilli
When the transformationW̃5UWU† is applied to the im-
plicit master equation~feedback is described by a feedba
Hamiltonian instead of the exponentials!, an equation is ob-
tained that is already of an explicit form,

Ẇ̃52 i Fga†a$b1b†1e f ~ t !%2
il

4
$a22~a†!2%,W̃G

1D@a#W̃1GD@b#W̃. ~3.10!

It can be seen thate f (t) represents the amplitude of th
driven cavity. Althoughf (t) is stochastic, it is a smoothe
~nonsingular! version of the photocurrent and can therefo
be treated without worrying about the stochastic calcu
Note also that sinceU contains only ancilla operators, th
system state matrixr5Trb@W̃# is the same as before
Trb@W#.

The transformed master equation was simulated us
quantum trajectory methods. It is shown in Fig. 8 that asG
becomes large, the adiabatically eliminated master equa
becomes a very good approximation to the full dynami
Clearly, though,G has to be pushed to much higher leve
than the TLA damping for this correspondence to hold. O
reason for this is that the Wigner functions of the steady-s

FIG. 8. ~a!, ~b!, and~c! are Wigner functions of the steady stat
produced with electro-optic feedback onto a mode forx5p/2 and
l52.2.~a! is the adiabatically eliminated state.~b! and~c! represent
the full dynamics withG510 and 100, respectively.~d! shows the
Bures distance between the adiabatically eliminated state and
state produced with the full dynamics asG increases. The error bar
are due to statistical error due to averaging over a less than infi
number of quantum trajectories. Only half error bars are given
cause, in a high-dimensional Hilbert space, a state with statis
errors will tend to be farther away from the adiabatically elimina
state than the true ensemble average will be.
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density matrices for electro-optic feedback onto a mode h
much greater structure, meaning that a measure such a
Bures distance~which measures the distinguish ability o
states! will be more sensitive to small differences. It also
likely that the parameter regime chosen is one in which t
system varies quickly, with the result that adiabatic elimin
tion will only be valid at very largeG.

A comparison of the Wigner functions@Figs. 8~a! and
8~c!# with that produced with simple feedback@Fig. 6~a!#
shows the expected similarity. It is expected because
~2.39! only differs from simple feedback due to the presen
of the double commutator noise term, which was chosen
be small.

D. All-optical feedback onto an atom

The basis size of the TLA ensures that simulating the
dynamics of all-optical feedback@Eq. ~2.40!# is relatively
easy. However, a threshold driving strength exists (l51)
for this system, which means that the adiabatically elim
nated master equation cannot be tested in the same regim
in the preceding sections. Instead, we setl50.97, which
enabled us to perform an accurate simulation with the co
putational resources available.

Once again we chooseK5ga†a and set 4g/G5p/2,
while varyingG andg. The Bures distance between the sta
produced by Eq.~2.40! and Eq.~2.46! is shown in Fig. 9, as
are some Wigner functions for the full dynamics and t
adiabatic state. It can be seen that the state produced wit
full dynamics approaches the adiabatic state at a similar r
asG is increased, to electro-optic feedback via a TLA.

There is a large similarity between the state produced
simple feedback in Fig. 6~c! and that in Fig. 9~a!, with the
presence of shearing being the most notable difference.
closer correspondence to simple feedback than that of

he

ite
-

al

FIG. 9. ~a!, ~b!, and~c! are Wigner functions of the steady stat
produced with all-optical feedback onto a TLA forx5p/2 andl
50.97.~a! is the adiabatically eliminated state.~b! and~c! represent
the full dynamics withG51 and 10, respectively.~d! shows the
Bures distance between the adiabatically eliminated state and
state produced with the full dynamics asG increases.
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electro-optic feedback systems is not surprising given
the adiabatic all-optical master equation was the same
simple feedback to a higher order~second!. The smaller driv-
ing also contributes to the closeness of the states.

E. All-optical feedback via a mode

It was shown in Sec. II E that in the adiabatic limit a
optical feedback onto a mode has the same effect as fee
back onto a TLA. Therefore, the same threshold for the d
ing strength exists for this system (l51).

The basis size required here is not as large as for elec
optic feedback because the photons leak out of the sys
and into the ancilla cavity, giving a smooth variation of ph
ton number. Despite this, a quantum trajectory simulat
was still found to be necessary. The results obtained fol
50.97 and 4g/G5p/2 can be found in Fig. 10. The adia
batic state is, of course, the same as for all-optical feedb
onto a TLA. There is a notable difference in the speed
which the full dynamics approaches this state. At low dam
ing, the Bures distance is already very low. The conclusio
that the ancilla mode has a minimal effect on the syst
when included in an all-optical feedback loop.

F. Comparison with ‘‘reversible feedback’’ generated
by a x „3… nonlinearity

Finally, we consider the effect of placing ax (3) material
inside an optical cavity driven by a parametric oscillat
There is no feedback loop involved. The Hamiltonian gen
ated by thex (3) nonlinearity~a Kerr nonlinearity! is given by
@26#

HKerr5
x

2
~a†!2a2. ~3.11!

FIG. 10. ~a!, ~b!, and ~c! are Wigner functions of the stead
states produced with all-optical feedback onto a mode forx5p/2
and l50.97. ~a! is the adiabatically eliminated state.~b! and ~c!
represent the full dynamics withG51 and 10, respectively.~d!
shows the Bures distance between the adiabatically eliminated
and the state produced with the full dynamics asG increases. Half
error bars are used for the same reason as in Fig. 8.
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The Heisenberg equation of motion of the annihilation o
erator due to this Hamiltonian is found to beȧ5
2 ix(a†a)a. Thus, it is clear that thex (3) nonlinearity causes
a detuning proportional to the intensity of the field inside t
cavity. In this way, the system has a self-awareness tha
similar to simple feedback, which is why a comparison
relevant. In fact, it can be shown that the two systems
classically equivalent given the same choice of the param
x. For large feedback, the two systems diverge when trea
quantum mechanically. One of the main reasons behind
is that the Kerr effect displays no periodic dependence u
its magnitude, whereas the simple feedback does. Thi
illustrated in Fig. 11~c!, where the Bures distance betwee
the steady states of the two systems is plotted for varyingx.
The Wigner function of the ‘‘reversible feedback’’ stead
state forx5p/2 with l52.2 andl50.97 is given in Figs.
11~a! and 11~b!, respectively. They are seen to be very d
ferent from any of the steady states produced by feedba

IV. DISCUSSION

A. Summary

The description of feedback in compound quantum s
tems~where the output from the system is used to control
evolution of the ancilla, which is reversibly coupled to th
system! is greatly simplified if the ancilla can be adiaba
cally eliminated. We have shown how this can be done
four generic cases, arising from considering two forms
feedback~all optical or coherent, and electro-optical or inc
herent! and two types of ancilla~a two-level atom and an
optical mode!. The four resulting master equations for th
system alone are given below. They are the most impor
results of this paper. We also include the perturbative exp
sions of these master equations to third order in the feedb

ate

FIG. 11. The first two plots are Wigner functions of the stea
states produced with ax5p/2 nonlinearity.~a! and~b! have driving
strengths ofl52.2 and 0.97, respectively.~c! shows the Bures
distance between simple and ‘‘reversible’’ feedback forl50.97.
~d! is a mesh plot of the Wigner function displayed in~a!.
3-11
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operatorZ. All of the equations are identical to first order
Z, but differ in second or third order.

For comparison, we begin with simple feedback~that is,
with no ancilla! based on detection of the intensityI
5bout

† bout of the output fieldbout5bin1c, and using the feed
back HamiltonianH fb5I (t)Z. The master equation for thi
is

ṙ52 i @H,r#1D@e2 iZc#r. ~4.1!

The remaining master equations result from trying to rep
duce this form of feedback via an ancilla.

The first master equation derived using adiabatic elimi
tion is for electro-optic feedback via the inversion of a tw
level atom:

ṙ52 i @H,r#1E
0

`

dq e2qD@e2 iqZc#r. ~4.2!

This differs from the simple feedback master equation~4.1!
at second order inZ. The second is for electro-optic feedba
via one quadrature of an optical mode:

ṙ52 i @H,r#1D@e2 iZc#r1
G

e2
D@Z#. ~4.3!

Again, this varies from simple feedback at second order.
size of the extra second-order term is determined byG, the
damping rate for the ancilla mode, ande, the strength of
driving of the ancilla mode.

Turning now to all-optical feedback, we have found th
the same master equation arises regardless of whethe
feedback is via the inversion of a two-level atom or the
tensity of an optical mode. It is

ṙ52 i @H,r#1DFexpS 22i arctan
Z

2D cGr. ~4.4!

Unlike Eq. ~4.2!, this differs from Eq.~4.1! only at third
order inZ.

B. Relation to previous work

As mentioned in the Introduction, Slosser and Milburn@7#
perform adiabatic elimination of the pump mode of a non
generate parametric oscillator. In their system, the pu
mode is driven by the output photocurrent from the id
mode. The procedure they adopt is similar to that contai
in Sec. II B of this paper, in that they expand the dens
matrix in terms of the lower number states of the pum
mode. However, in Sec. II C we have already noted that
is not appropriate when dealing with direct detection fe
back onto amode. Higher number states are essential to
description of the system if the feedback strength is lar
For this reason, they limit the feedback strength to small
moderate values, with a generalization to larger feedb
contained in their Appendix. This Appendix does not expla
the origin of the all-orders feedback term. The techniques
adiabatic elimination using QLE’s that are presented in t
paper make it easy to treat their system rigorously to
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orders in the feedback strength. The final result, using th
definitions and our superoperators, is~with perfect detection
assumed!

ṙ5e@a†b†2ab,r#12GD@ab#r1gaD@a#r

1gbD@exp~xab2xa†b†!b#r. ~4.5!

Note that the second term here is the one analogous to
final term in our Eq.~4.3!.

Doherty and co-workers consider a strongly interact
system comprised of an atom inside a cavity@10#. The meth-
ods used for adiabatic elimination are similar to those use
this paper. They form QLE’s for operators from any of th
three subsystems~center-of-mass motion, internal state, a
the cavity mode! and then set the time derivatives of, firs
the internal state operator and, second, the cavity operato
zero. They then substitute into the QLE for the moment
operatorpx . After a conversion to the explicit form of the
QLE, they show that the QLE they derive is compatible w
the master equation~using their notation!

ṙ52
i

\ F px
2

2m
,rG1

k

2
DFexpS 22i arctan

Z

2DaGr, ~4.6!

where

Z5
g0

2cos2kLx

Dk
. ~4.7!

Note the similarity with our equation resulting from adi
batic elimination of an optical mode where the coupling
via the intensity~but of course there is no feedback here
our operatorc is replaced by thec numbera). The derivation
of this master equation in Ref.@10# is not completely rigor-
ous in that other master equations would also be compa
with the QLE they derive forpx . However, it would be
straightforward, using the technique we introduced in S
II E, to make it rigorous.

The work done on all-optical feedback in this paper fo
lows that done by Wiseman and Milburn@4#. They were able
to show that all-optical feedback onto a mode could replic
electro-optic homodyne-detection feedback, but they co
only prove equivalence with direct-detection feedback
second order. Here, we have shown that this is because
equivalence only holds to second order. We have done
by finding the master equation to all orders in the feedb
strength, and showing it to be of the Lindblad form.

Showing that all-optical feedback via an ancilla~be it a
two-level atom or a mode! cannot replicate electro-optica
direct detection feedback leads naturally to the question
whether a more complicated all-optical feedback scheme
replicate direct electro-optic feedback. Since the feedbac
replicated to second order, a fruitful approach would seem
be to make the feedback weak, while multiplying the numb
of ancillae to compensate. That is,N ancillae are used, with
coupling to the system scaling as 1/N, where the output of
the system is fed sequentially into all of the ancillae. It c
be shown that in the limitN→`, this hypothetical all-optical
3-12
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feedback scheme does indeed produce the simple ele
optic feedback master equation~4.1!.

C. Conclusion

We have shown that it is possible to greatly simplify t
description of feedback in compound quantum systems
adiabatically eliminating the ancilla, to give master equatio
for the system alone. In essence, we have found the
order inG21 effect of the ancilla upon the system, whereG
is the ancilla decay rate. We have done this for a variety
ancillae and forms of feedback, and found good agreem
with numerical simulations of the dynamics for the full com
pound quantum system. The master equations in the var
cases are quite different, and their range of validity~that is,
how largeG has to be for them to be valid! was also found
numerically to differ. For the numerical simulations, we
course used a particular system, but the equations we de
are very general.

The primary motivation for this work is the reduction o
basis size that is necessary to describe the evolution of
system. It is hoped that the derived equations will prove
be helpful to co-workers. However, we note that numeri
testing ~to find the regime in which these equations are
good approximation! may be necessary to determine when
is appropriate to use them. Apart from these practical
vances, we feel that the previously existing confusion in
literature, as discussed in the Introduction, has been reso
and the procedure of adiabatic elimination in compou
quantum systems with feedback is now on stable ground
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APPENDIX A: PROOF OF LINDBLAD FORM

1. Electro-optic feedback onto a TLA

To show that Eq.~2.24! can be written in the Lindblad
form, the following identity will first be established:

~G2C@K# !E
0

`

dxJ@e2x(G12iK )/2#r5r. ~A1!

Multiplying the equation through by two arbitrary eige
states ofK, ^au andub&, from the left and right, respectively
the following is obtained:

rab@G1 i ~a2b!#E
0

`

dx e2x[G1 i (a2b)]5rab . ~A2!

After the simple integration is performed, the identity
proved. Before using this, the following rearrangement
made:

C@Z#~12C@Z# !215~12C@Z# !2121. ~A3!
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Upon use of the identity withZ5K/G, the master equation
Eq. ~2.24! becomes Eq.~2.25!.

2. All-optical feedback onto an atom

In order to show that the master equation can be writ
as in Eq.~2.48!, it is sufficient to show that

exp@22i arctan~Z/2!#r exp@2i arctan~Z/2!#2r

5C@Z#J@~11 iZ/2!21#r. ~A4!

Note thatJ@c# has been omitted as it is a multiplicativ
factor on both of the superoperators.

We now use the result

exp@22i arctan~Z/2!#5
12 iZ/2

11 iZ/2
~A5!

to simplify the left-hand side of the above expression. It c
now be written as

12 iZ/2

11 iZ/2
r

11 iZ/2

12 iZ/2
2

11 iZ/2

11 iZ/2
r

12 iZ/2

12 iZ/2
. ~A6!

After algebraic manipulation, this can be shown to be eq
to the right-hand side of Eq.~A4!, as required.

APPENDIX B: ELECTRO-OPTIC FEEDBACK VIA
AN ATOM WITH JAYNES-CUMMINGS COUPLING AND

DETUNING

In this appendix, we take the compound system as bein
single-mode optical cavity, with electro-optic feedback on
a TLA that is placed in the standing wave of the cavity. T
Jaynes-Cummings coupling that will be used isV5g(as†

1sa†), with g being a real constant anda the annihilation
operator for the cavity mode. A detuning ofds†s is also
included. The following hierarchy of parameters will be i
vestigated:

d@g@G@C@Hs#. ~B1!

Of course,C@Hs# is really an operator~containing the system
Hamiltonian terms! so here we are only referring to its scal
part.

As will be shown, when the necessary variables
slaved, a Hamiltonian term of the formg2a†a/d is obtained
in the final master equation. With the above scaling, t
Hamiltonian is not necessarily small compared toG. This
makes the adiabatic elimination of the atom more diffic
since the presumption that the atomic relaxation time
much shorter than any system time scale is not necess
true. To do the elimination of the atom rigorously, we the
fore transform to an interaction picture defined byH05
2g2(a†a1s†s)/d. This transformation has the addition
effect of adding a time dependence into the feedback term
the master equation. To nullify this, we will start with
time-dependent feedback Hamiltonian whose effect, wh
moved to the interaction picture, is time-independent. T
master equation in the Schro¨dinger picture is thus
3-13
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Ẇ5C@Hs#W2 i @ds†s1g~as†1sa†!,W#1GD@s#W

1D@$s exp~2 ig2t/d!1s†exp~ ig2t/d!%a#W. ~B2!

In the interaction picture with respect toH0, the master
equation is

Ẇ̃5U†C@Hs#~UW̃U†!U2 i @g2~a†a1s†s!/d,W̃#

2 i @g~as†1sa†!1ds†s,W̃#1GD@s#W̃

1D@exp~2 ipsx/2!a#W̃. ~B3!

For simplification, we will setD5d1g2/d.
The expansion of Eq.~2.17! is made, with ther ’s now

understood to be in the interaction picture. A similar ad
batic elimination procedure to that contained in Sec. II B
performed, except here an expression forr1 is required. In
the limit D'G2 and g2'GD, we find derive the following
master equation:
e

st
tra

ys

m

01380
-
s

ṙ5C@H̃s#r1D@a#r1
Gg2

D2
D@a#r2 i Fg4~a†!2a2

D3
,rG

1
2g2

DG
C@a†a#S 12

2g2

DG
C@a†a# D 21

J@a#r. ~B4!

In the limit of D@G2, while still maintainingg2'GD, the
third and fourth terms drop out, leaving the same mas
equation derived in Sec. II B, withZ52g2a†a/GD of order
unity. This is the same limit in which Walls and Milbur
arrive at the effective Hamiltonian used in Eq.~2.15! @19#.
The third and fourth terms correspond to, respectively,
increased damping rate and ax (3) nonlinearity for the cavity
mode.

Note that the derived Hamiltonian term that cast dou
upon the adiabatic elimination process has been canceled
course, when we return to the Schro¨dinger picture it will
reappear, leaving a different master equation from that
Sec. II B. The solution is to start with an extra Hamiltonia
term of the form 2g2a†a/D when using the Jaynes
Cummings coupling. A transformation to the interaction p
ture is then not required, nor is the time dependence in
feedback.
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