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Feedback in compound quantum systems is effected by using the output from one sulf&ysterystem”)
to control the evolution of a second subsystéfthe ancilla”) that is reversibly coupled to the system. In the
limit where the ancilla responds to fluctuations on a much shorter time scale than does the system, we show
that it can be adiabatically eliminated, yielding a master equation for the system alone. This is very significant
as it decreases the necessary basis size for numerical simulation and allows the effect of the ancilla to be
understood more easily. We consider two types of ancilla: a two-level afeilla, a two-level atopnand an
infinite-level ancilla(e.g., an optical modeFor each, we consider two forms of feedback: coheffemtwhich
a quantum-mechanical description of the feedback loop is requaed incoherentfor which a classical
description is sufficient We test the master equations we obtain using numerical simulation of the full
dynamics of the compound system. For the systemparametric oscillatprand feedbackintensity-dependent
detuning we choose, good agreement is found in the limit of heavy damping of the ancilla. We discuss the
relation of our work to previous work on feedback in compound quantum systems, and also to previous work
on adiabatic elimination in general.
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[. INTRODUCTION tem, the ancilla. In this paper, we are concerned with the last
possibility. This is of interest because it arises very naturally
The quantum theory of continuous Markovian feedback isn quantum optics in both all-optici#t] and electro-optical
now well understood1—4]. Continuous feedback arises in a [7] contexts. In principle, this sort of feedback can be de-
situation where a system continuously interacts with its enscribed as a Markovian process in the larger state space of
vironment, and the environment is deliberately engineerethe system plus ancilla. In practice, this procedure is often
such that the influence of the system on the environment actsot useful, because of the critical wolatger in the preced-
back on the system at a later time. This can be described d@i8g sentence. If the required basis sizes of the system and
a Markovian process whe(@) the natural coupling of the ancilla areN andM, respectively, then the Liouvillian for the
system to the environment is approximately Markovian, anccompound system has of orddfM#* elements. Clearly for
(b) the effective time delay in the feedback process is negliM large, this is much larger than a Liouvillian for the system
gible compared to any relevant time scale of the system. I&lone.
the Markovian approximation is appropriate, this leads to the Consequently, it would be an advantage to obtain a master
great simplification that the system evolution may be de-equation for the system alone, without the ancilla. This is
scribed by a master equation of the Lindblad fdisih possible if the ancilla can be adiabatically eliminated, that is,
It is possible to divide quantum feedback into two catego-f the ancilla has a decay rate much faster than any relevant
ries, which we may call coherent and incoherent, followingsystem rate, so that it is always in a steady state determined
Lloyd [6] (but without being limited by his definitionsIn by the system state. It is the purpose of this paper to deter-
the latter case of incoherent feedback, it is not necessary tmine numerically the conditions under which this is possible,
use a quantum description of the entire feedback loopand to derive the resultant master equations under those con-
Rather, at some point, it is permissible to change from alitions, for a variety of general feedback systems.
guantum to a classical description by invoking a measure- Previous work in this area has left the situation somewhat
ment step. In a quantum optical context, this corresponds toonfused. Wiseman and Milbur®] considered all-optical
electro-optical feedback4] where a photocurrent derived feedback via an ancilla system, and adiabatically eliminated
from detecting the light radiated by the system is used tdhe ancilla. This was shown to be equivalent to electro-
control electro-optical devices that change the behavior obptical feedback for quadrature feedback. However, for in-
the system. In the former case of coherent feedback, a quatensity feedback it was the same only to second order in the
tum description of the entire feedback loop is necessary. In feedback strength. Moreover, the master equation defieed
quantum optical context, this corresponds to all-optical feedsecond ordgrwas not of the Lindblad form.
back[4] in which the light radiated by the system is reflected  Slosser and Milburfi7] considered electro-optic feedback
so that in interacts with the system again, perhaps via somef the photocurrent from the idler mode of a hondegenerate
other system. parametric oscillator onto the pump mode. Here the signal
Continuous quantum feedback may be non-Markovian foand idler mode formed the system and the pump mode was
a number of reasons. The coupling to the environment maghe ancilla. The procedure they adopted for deriving a master
be non-Markovian. The time delay in the feedback loop mayequation for the system was as follows. They expanded the
be non-negligible. The feedback may act via a second sydeedback master equation for the compound systeffirsd
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order in the feedback strength, adiabatically eliminated the
pump mode, but the final result presented for the systerr
master equation contained first- aselcondorder terms. As

in Ref.[4], this second-order master equation was not of the
Lindblad form. Furthermore, the steady-state field averages

were calculated using an unstataii-order master equation system
(which was of the Lindblad form There are other problems — outputfield
with this paper{8], but they are not relevant to the present
work.

In this work, we show how adiabatic elimination can be
done rigorously in compound quantum feedback systems FIG. 1. Schematic representation of simple feedback. The sys-
such as those of Reff4,7]. As well as being of interest in tem is taken to be a single-mode optical cavity, with annihilation
the field of quantum feedback, the methods we use for adiasperatora and damping rate. All subsequent figures will also use
batic elimination are of more general interest. While adia-an optical cavity for the system.
batic elimination of an ancilla mode that is linearly coupled
to the system is well understood, adiabatic elimination with a The most general form of the simple feedback master
nonlinear(e.g., proportional to the intensjtgoupling is not.  equation has been derived by Wisenj&h Consider a sys-

In particular, the methods we use here put the results odem with HamiltonianH and some dissipation at rateand
tained by Doherty and co-workef40] on the motion of an  with lowering operatoc. With 7 set equal to unity, the mas-
atom coupled to a damped optical cavity mode on a moréer equation is

rigorous footing. .

This paper is organized as follows. In Sec. II, we consider p(t)=—i[H,p]+yD[c]p, 29
simple direct-detection feedback, and the four types of analo- ) .
gous feedback in compound systems: electro-optic feedbacknere the Lindblad5] superoperator is
via a two-level atom, electro-optic feedback via an optical _
mode, all-optical feedback via a two-level atom, and all- Dlel=Jcl=Alc], 22
optical feedback via a mode. We show that in all four case§yhere for arbitrary operatora andB,
it is possible to eliminate the ancilla under suitable condi-
tions, giving a master equation for the system alone. In Sec. JAIB=ABA', A[A]B=3{A'AB}. (2.3
Ill, we compare the stationary state of these master equations
with the solution of the full dynamics of the compound sys-It is the dissipation that allows for continuous observation,
tems. For this test we choose the free dynamics of the systethe result of which is a current(t). In this paper we are
to be that of a below-threshold parametric oscillator, theconcerned with what is known as direct detection, where
qguantity being fed back to be the intensity, and the quantity
being controlled by the feedback to be the detuning. We also [(t)=dN(t)/dt, (2.9
compare the results of all five feedback mechanisms with ) _ . .
that caused by an analogous “reversible feedback” gener?neredN(t) is the point procesgthe increment in the num-
ated by ay(® nonlinearity. In Sec. IV, we conclude with a Per of photons countgdiefined by
discussion of our results.

feedback
device

electromagnetic cavity photodetector

Y

[dN(t)]?=dN(1),

- T
Il. ADIABATIC ELIMINATION ELAN(D]=ydtTrciepe()] 29
A. Simple feedback Here E denotes a classically probabilistic ('axpecta'ti'on value,
) ) while thec subscript denotes that the staigis conditioned
In order to discern how the dynamics of a system arén the previous measurement results. We have assumed that
affected by a feedback loop that includes an ancilla, it isthe detection is perfectly efficient; the generalization to inef-
useful to know the master equation for simple feedback. B¥icient detectors is trivial3].
simple feedback it is meant that the measurement results, gimple feedback arises from adding a Hamiltonian to the
based on continuous observation of a source system, are igystem evolution of the form
mediately used to alter the evolution of the source without
the involvement of any other quantum system. To use an Hy(H)=1(1)Z, (2.6)
example from quantum optics, a photodetector may register
photon arrivals from a cavity at discrete times and, at thes&hereZ is a Hermitian system operator. Taking into account
times, some specified change to the system may be madkee singularity ofl (t), and the fact that the feedback must act
(see Fig. 1 Types of changes include altering the optical after the measurement, it is possible to derive a master equa-
path length or damping rate of the cavity. In the remainder otion for the system with feedback, averaging over all realiza-
this paper, we will often use quantum optics terminology, butions of the stochastic measurement reddidl. The result is
it should be remembered that the theory is not restricted to _ _
optical physics. p=—i[H,p]+ yD[e %c]p. 2.7
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To compare this master equation with those obtained later, i feedback
is useful to expand the exponentials to third order, device

. 1
p=—i[H,p]+yDlclp+y| C[Z]+ E(C[Z])2

system
output field

1
+ g(C[Z])S]J[C]p, (2.8

photodetector

whereC[ A]B= —i[A,B] for arbitrary operatoré\ andB.

The derivation outlined above for the feedback master
equation treats the photocurrdit) as a classical stochastic
process, which causes the conditioned system ptate un-
dergo stochastic evolutiotknown as a quantum trajectory
[11]). There is an alternative derivation which treats the pho- B. Electro-optic feedback via an atom
tocurrentl (t) as an operator. This derivation works in the
Heisenberg picture, where the system evolution is describe
by stochastic operator differential equations known as quar%
tum Langevin equatiorid2]. This method is useful for adia- '©
batic elimination, so we will briefly review its features.

Quantum Langevin equatiof®LE) are constructed with-
out using the concept of measurement. The dissipative ev
lution of Eq.(2.1) can be derived in a quantum optical con-
text from a linear couplingin a rotating frame and with the
rotating-wave approximation

FIG. 2. Schematic representation of direct detection feedback
onto a TLA that is coupled back to the system. The system damping
rate has now been set equal to unity and the TLA damping rdte is

The simplest possible ancilla system is a two-level atom
LA). In this section we consider incoherdptectro-opti¢
edback via this ancilla. The output from the system is
monitored by direct detection, the results of which are used
to affect the evolution of the TLA that is coupled to the
System, as shown in Fig. 2. The system and ancilla are as-
sumed to have approximately the same resonant frequency.
The most natural form of feedback involves flipping the state
of the TLA whenever the photodetector monitoring the sys-
tem makes a detection. This can be achieved with a feedback

V=iVy[vT(t)c—clo(t)] (2.9  Hamiltonian of the form

between the system and a bath of harmonic oscillators. Here
v(t) is the bath annihilation operator at the point at which it
interacts with the system. Just before this point, the bath is an

: e s Here o, is the usual Pauli spin matrix for describing an
nput vacuum, with field operatar;,(t) satisfying[12 X . :
nput vacuum, with i peratari(t) satisfying[12] atomic stat¢13]. It could be realized experimentally by very

[vin(1), 0l (1) ]=8(t—t"), (2.10  briefly driving the atom with a pulse of on-resonance radia-
" tion (a “ = pulse) which will flip it from the ground to the
and has all normally ordered moments vanishing. Just aftegXcited state.

T
HbeEO')(l(t). (214)

this point, the bath is an outp@onvacuum with field op- With this form of feedback, the obvious coupling of the
erator[12] atom to the system to consider is one proportional to the
excited-state population operator'o. Here o=(oy
Voult) = vin(t) + Vye(b). (2.11 —liaoy)/2 is the atomic lowering operator. Specifically,
The photocurrent operatdtt) is simply the intensity of the H coupling= 0 oK, (2.19
output field

where K is an arbitrary Hermitian system operator. When
I(t)zvgut(t)vout(t)- (2.12 feedback onto th.e atom in the ground state occurs, the upper
state population jumps to a value of 1 and then decays away,
Add|ng together the evolution due o, V, and Hfb! and due to COUpIing to the continuum of eleCtromagnetiC field
again noting that the feedback must act after the interactioinodes. In other wordss" o will tend to follow the photocur-

one can derive the following quantum Langevin equation forrént. Thus there is a strong similarity to simple feedback, if
an arbitrary system operatef3]: is chosen to be some scalar multiplezof
It is not hard to generalize Eq2.7) to include the TLA

ds=[v{+ yctl(e?se ?—s)[vj,+ Vycldt+ y(c'sc ancilla
. m
exp( —i Ecrx)c

+TDlo]W, (2.16

—3sclc—3cles)dt—y[dVjc—c'dVy, 5]
+i[H,s]dt, 213

W= —i[Hgysenit 0 oK, W]+ D W

where dV,,=v;,dt. All operators have time argumerit

When the expectation value of this equation is taken, anvherel is the damping rate of the atom awdis the density
equation is obtained that can be converted to the mastenatrix for the compound system. The damping ratef the
equation(2.7) for simple feedback. system has been set equal to unity without loss of generality.

013803-3



P. WARSZAWSKI AND H. M. WISEMAN PHYSICAL REVIEW A63 013803

In general, the above master equation cannot be partiallgssumingk ~I'>1 (whereK ~I" means that the operatir
traced over the atom’s state in order to obtain a master equagg|es likel'), we find the steady state of, to be

tion for pgycen(t). The obvious exception to this is the case

whereK =0 and the system is unaffected by the atom. How- p>=(T'—C[K])~*Tclpo. (2.23
ever, if the atom reacts very quickly to the feedback and

returns to its initial state before more feedback arritt®  When this is substituted into E¢R.22), the master equation
next photodetection then this well-defined behavior can be for the system alone is obtained. With=K/T, it is

built into a master equation for the system alone. In essence,

the atom’s state is approximated by its equilibrium value ps={C[H+Dlc]+C[Z](1-C[Z]) ‘T c]}ps.

with respect to the instantaneous state of the system and

operators are replaced by their steady-state expressions. This

is known as adiabatic elimination of the atom. It is not immediately clear that this master equation is of the
To proceed with the adiabatic elimination, it is noted thatLindblad form[5]. However, in Appendix A1 it is shown
the total density matrix can be expanded as that it can be written as
W=po®| [ )(LI+pa® 1){1]+p1®] 1)( LI+ p2® 1)1,

o pomilHs o)+ | dae iDle Felp,. (229
where thep’s exist in the system subspace. All possible
states of the atom have been includétl)(and (|| corre-
spond to the excited and ground state, respectiveliis
approach is particularly appropriate because of the small b
sis involved. If the above expression ffis substituted into . ) 3
the master equation, then the atom operators can act on thep=ClH1p+Dlclp+{C[Z]+(C[Z])*+(C[Z])"} T c]p-
states of the atom. If the coefficients of the various orthogo- (2.26
nal states are equated, the following equations fopthare
obtained(the subscript '6” indicates the system

Some feeling for the nature of the master equation can be
obtained by an expansion to third orderdn(a small feed-
aQack approximation This gives(subscripts dropped

These terms can be compared to the third-order expansion of
Eqg. (2.8), with y=1. The difference in second- and higher-

. order terms means that for large feedback the two systems
po=ClHslpot+ T Cclpa— Alclpo+Tpz, (218 i pe significantly different. ’ ’

: r
p1=C[HS]p1+ile+‘7[C]pI—.A[C]pl— 5P1s C. Electro-optic feedback via a mode

(2.19 The more challenging task of adiabatically eliminating an
ancilla that has an infinite number of basis states is now
bz=C[Hs+ Klpo+ Jclpo—Alclpa—Tps. (2.20 considered. Optically, this could correspond to a single-mode
cavity. The method of expanding the compound density ma-
By tracing Eq(ZlD over the atom, the reduced density trix in terms of the lower number states of the ancilla is not

operator for the system is appropriate due to the type of feedback that is utilized. In-
stead we use quantum Langevin equations, which place no
Ps=po+p2 (2.21)  such restriction on the excitation of the ancilla.
The output field from the system is once again continu-
and its evolution equation is found to be ously monitored using direct detectig¢see Fig. 3. We take
the feedback to be linear driving of the ancilla cavity. It is
ps=—i[Hs,ps]+D[Clps—i[K,p,]. (2.22  described by the feedback Hamiltonian
Without some approximation, this is as far as the elimi- €
nation of the atom can be taken. It is not a master equation Hfb_i Ib+ib DI (v), (227

due to the dependence uppy As discussed previously, the

limit in which the atom returns very quickly to the ground whereb is the annihilation operator for the cavity,repre-
state after feedback needs to be considered. Because tkents the amplitude of the coherent driving field, & is
probability for photodetection in any infinitesimal time pe- the operator for the photocurrent output from the system.
riod scales as the size of the period, the atom is in the grounthis causes a jump in amplitude of the ancilla cavity of size
state almost all the time. The approximation tpgt=py is  €/2 when there is a photodetection.

therefore made. From E@2.20), it can be seen that I is To provide a feedback circuit that is classically equivalent
large compared to the other coefficientspef(except possi- to simple feedback in the limit of large damping of the cav-

bly K), then fluctuations in this operator will be quickly ity, the following choice of coupling is made:
damped out ang, can then be set to zero. The effectkofs
to cause rotation g6, but not to affect its size. The physical V= E(b+ b (2.29
picture already described is consistent withbeing large. 2 ' ‘
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) K T €
b=—i5—§b—ﬁum+ Evgulvout, (2.32
b
showing thatb follows the photocurrent as expected. For
system largeI’, the fluctuations irb due to system operators will be
. a output quickly damped out. However, the stochastic terms have an
coupling fleld ™" infinite bandwidth, so that it is not strictly possible to slave
photodetector an operator that only responds to a finite bandwidthto
these fluctuations. Although this problem can be side-
stepped 4], it will prove advantageous to use the following
equilibrium value ofb;
r feedback iK o . \/_ €
ancilla device b“?‘fo dre PUin(t=7) = Svouvoult=7) |-
cavity '
output Tield (2.33

FIG. 3. Schematic representation of direct detection feedbacK he integral serves to determine the present contributidn to
onto an optical cavity that is coupled back to the system. The anfrom the stochastic terms at tinbe- 7. This contribution falls
cilla cavity has annihilation operatdrand damping raté'. off at rateI'/2, the amplitude decay rate for the ancilla cav-

ity. The term that is not under the integral is not stochastic
The equivalence is due tofollowing the photocurrent and, and is therefore slowly varying compared to the highly
also, an appropriate choice Kt damped cavity operators. Thusgan follow the evolution of

The total master equation is K to a very good approximation.

To simplify matters, the Langevin equation fwill now
be rearranged before substitution so thgtwill annihilate

. K t
N t e(—b+bh/2
w=-i 2 (b+b)+Hs,W|+Dle clw the vacuum when the expectation value is taken. This gives

+I'D[b]W, (2.29 i
ds=D[c"s dt—[dV]c—cTdV,,,s]+ E(bT[K,s]
where once agaiW is the density matrix describing the
compound system and the damping of the system has been +[K,s]b)dt+i[Hg,s]dt. (2.34)

set equal to unity. The damping rate of the ancilla cavity is

given by I'. The quantum Langevin equation that corre-Thjs is valid a andb™ commute with system operators. We
sponds to this master equation can be found by extending Egannot move the stochastic patt(t) of v,.{(t—7) through
(2.13. The result for an arbitrary operatofrom either sub-  the system commutator term to annihilate on the vacuum.

system is However, it is possible to move the photocurrent itself at
; . time t— 7 as it commute$12]. If the integrals that will an-
dr=v] [eC~P)2re=ed=bN2_r1y, dt+D[ctrdt nihilate on the vacuum when the trace over the bath is taken

are ignored, then we are left with
~[dVic—c'dVi,,r]+ Db Ir dt— yT[dUl b g

i e 1
CbtdU, ]+ dt. (2.30 s=§[K,s]fodre*“’2|(t—r)—E[K,[K,s]ﬁ@[&]s

K T
E(b+b )+Hg,r

—[vic—clvin,s]+i[Hs,s]. 2.3
where dU;,=u;,dt. The vacuum field input for the driven [oinC=Cvin,SIHi[Hs.s] (239

cavity, u;,, has the same properties &s. i . .
To adiabatically eliminate the cavity, in the limit of heavy If the limit ' is taken, the integral reduces to(g)/T".

damping, a QLE will first be determined for a system opera-! € resultant equation faris an implicit equation as it was
tor, s. Equation(2.30 is greatly simplified, as commutes derived by idealizing the properties of the cavity and envi-

with all driven cavity operators, to give ronment[14]. An explicit equation is now required.
¥y op ¢ The term that needs to be treated in E8.35 can be
ds=D[c']s dt-[dV]c—c'dV,,,s] written as
1K . ) elC[K]s
+1 E(b"f‘b )+Hg,s|dt. (2.31) Simplicit= — T . (2.36

From this it is evident that an expression fois required if ~ This gives an explicit increment of the forf,15|
a master equation for the system alone is to be derived. The
QLE forbis d Sexpiicit= AN{exp( — eC[K]/T") — 1}s, (2.37
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W= —i[H¢+V,W]+D[c]W+I'D[¢]W
+T([cW,o']+[o,Wc]). (2.40

The system damping has been set equal to unity as usual and
I' is the damping rate of the atom.

In order to investigate the degree to which all-optical
feedback can replicate electro-optical simple feedback, a
coupling is chosen that is linear in the excited-state popula-

tion of the atom. We expect this operator to follow the output
; fﬁ'ﬁgﬁ{l 5 photocurrent from the system. That is, we assume a coupling
e field T / identical to that in Sec. Il BEg. (2.19]. Making the expan-
sion of Eq.(2.17) gives the following for thep’s

FIG. 4. Schematic representation of all-optical feedback onto a po=C[H<lpo+Dlclpo+Tpo+T(cpi+pich,
TLA that is coupled back to the system. (2.4

where dN=Idt=dN?=v] v,,dt. Remembering that the . r
photocurrent is actually evaluated at a slightly earlier ime P+~ ClHslp1+Dlclpst VT(po=po)c’ +ip1K - 2P
than the system operators allowsg, to be moved to the (2.42
right of the expression. If we se&t=eK/I', in order that our

equations can be compared to simple feedback, then the total,=C[H¢]p,+ D[ c]p,— VT (cp1+pichH) —i[K,po]—Tp,.
Langevin equation is (2.43

I The above equations lead to an equation of motion for the
dS=[U%'ﬁ'CT](eiZSE_iZ—S)[vin+C]dt— ;[Z[Zﬁ]]dt system density operator of
€

p=C[H¢lp+Dlclp—i[K,p,], (2.44

which is the same as ER.22). To find an expression fqr,,
When the expectation value is taken, the stochastic part athe normal procedure of takirg large compared t6[ Hg] is
nihilates on the vacuum and the following master equation iperformed. Thusp, can be slaved to system operatagsg,
obtained: andp,. Now as we only require a master equation that gives
the leading-order effect iff ~* of the ancilla on the system,
_ ‘ r p» can be set equal to zero in tlpg equation, which is the
p=—i[Hs,p]+Dle ?clp+ —Z'D[Z]p. (2.39 approximationpg=~p. This is valid asp,~pg/I". By substi-
€ tuting the slaved expression fpy into that for p,, we find
after simplification
The only difference from simple feedback is the third term.
This is a term of second order in the feedback operator 4 2K\ 1
and represents a type of noise that will tend to smooth over P2~ T + T/ C
the interesting behavior of the system. Clearly it can be made
arbitrarily small if e is made large enough. A more detailed This can now be substituted into E@.44) to obtain a mas-

+D[cMs dt—[dV]c—c'dV,,,s]+i[Hs,s]dt. (2.39

Po- (2.49

discussion of this term is given in Sec. Il C. ter equation. WritingZ=4K/T", we have
. . : zi\ !
D. All-optical feedback via an atom p=C[H]p+D[clp+C[Z] 1+ 5 clp,
We turn now to coherent or all-optical feedback. Once (2.46

again we begin with the simplest possible ancilla, a two-level
atom. All-optical feedback via an atom involves the reflec-which is the same as the simple feedback @cf) to second
tion of the output field from the system onto the atom, whereorder. The third-order term is

the atom is reversibly coupled to the system. Here, the reso-

nant frequencies of the two systems are taken to be equal. It EC[Z](j[Z]—ZA[Z])j[c] (2.47)
is different from electro-optic feedback as there is no mea- 4 p- '
surement step; the light is just reflected around a loop with

the use of mirrorgsee Fig. 4 The theoretical description of Again it is not obvious that Eq2.46 is in the Lindblad
such systems was developed largely by Carmicfgland ~ form, but it is shown in Appendix that it can be written as
Gardiner[17] and has been termezhscaded open systems

theory. If linear bath-system couplings are assumed, then the p=—i[Hq.p]+D

. . C
compound master equation is

p. (2.48

Z
ex;{ —2i arctani
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2( 2iK)‘1
b=——=|1+—] c

b T
system + \/Ff dTefrT(lJFZiK/F)IZUm(t— 7). (252
coup]ing Q. ... O:tll:)(l;t ................... 0
1€

The same trick of rearranging the QLE for the system opera-
tor is again used so that, in this case, all of the integral terms
4 annihilate. We set

i[Kb'b,s]dt=ib'[K,s]b dt. (2.53

Substituting into this the expression forandb' gives four
terms, only one of which is nonzero when the trace over the
bath is taken. This term is

PBS

dic’ 2iK\ 1
(1—T) [K,s]

2iK\ 71
1+ T C. (254)

FIG. 5. Schematic representation of all-optical feedback onto a r

single-mode cavity that is coupled back to the system. A FaradaY . . .
rotator (FR) and a polarization-dependent beam splitRBS are n effect, an implicit equation has been derived that has no

included in the feedback loop. contribution from stochastic operators, resulting in there be-
ing no need for an implicit/explicit distinction. It is now
E. All-optical feedback via a mode possible to turn the equation fdis into a master equation for

, , ) . the system. When this is done, we arrive at the same result as
The final compound system that will be considered 'n'Eq. (2.46. The conclusion is that to first order i1, the
"avity has the same effect on the system that the atom does,

optical cavity that is coupled back to the systé&me Fig. 5. when included in an all-optical feedback loop.

A Faraday isolatoricomprised of a Faraday rotator and a |, hingsight, this is what we should have expected, as in
polanzanon-depender)t beam splijtprevents reflectgd ight e |imit of large damping only the lowest number states of
from the cavity returning to the system. The only differencey,e ¢ayity will be occupied with significant probability. One

in the total master equation from the precedi_ng section _is th'Eould therefore have expanded the total density matrix analo-
replacement of the atom lowering operatr)lthh_the annl> gously to the TLA system to obtain the same equations im-
hilation operatob. Thus a coupling of the forfv=Kb'bis  eqiately. This is in contrast to the electro-optic feedback,

considered. _ where higher number states are essential to the description of
The derivation of a master equation for the system alongy,o cavity.

follows similar lines to that of Sec. Il C. The QLE for an
arbitrary operator i$17] Ill. COMPARISON WITH EXACT RESULTS
dr=+i[Hg+V,rldt+D[c"]r dt—[dV]ic—cdV,,.r] We have shown that in principle it is possible to consider
a variety of different sorts of feedback in compound quantum
+I'Db"]r dt—VT[dVb—b'dV;,,r]+T(b'rc systemg, and to adiabatically eliminate the gncillar?/ system
+cfrb—rbfc—c'br)dt. (2.49 to arrive at master equations for the system of interest alone.
These master equations should be exact in the limit that the
ancilla is damped infinitely faster than the system. In prac-
tice, this will never be the case, so it is an interesting ques-
tion to find out under what conditions the equations are valid.
This can be done by simulating the full master equation for
(250  the compound system and comparing to the results of the
master equation for the system alone.
To make such a comparison requires specifying the feed-
back operatorZ, and the system Hamiltoniahls. Once this
. is done, a comparison can be made by looking at the station-
db= — §b+ JTvi,+VTe+iKb |dt. (2.57)  ary solutions of the respective master equations. While this
could be criticized as not being a complete test, it has the
advantages of definiteness and ease of calculdifosome
This justifies our initial presumption that the cavity photon cases at leastFurthermore, we choose a system and Ham-
number would follow the photocurrent. Fadr large, it is iltonians (Hg andZ) such that the stationary solutions have
possible to slavé to the system operators and to form anenough structure for the comparison to be interesting. The
integral expression for the contribution from the stochasticcomparison is both quantitative and qualitative, with the use
term, as in Sec. Il C. The result is of the Bures distanc§l8] as a measure of the difference

For a system operator this becomes

ds=D[cs dt—[dV! c—cTdV,,,s]+i[Hs+Kb'b,s]dt.

n

The next step is to find an equation for The QLE that
governs it is
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between the state matrices and the Wigner funci®i to 4 ‘

illustrate them. @
We take the system to be a damped single-mode optica

cavity. That is, we choose=a, an annihilation operator o :

satisfying[a,a’]=1. We choose a system Hamiltonién a
rotating frame of

in_, 5 -4 -2 0 2 4
H=—;la’=(@"?]. (3.3 X,
4
This describes a degenerate parametric amplifiéwo- 5 ©
photon” driving), which can be realized by driving an intra- .
cavity crystal with ay(® nonlinearity with light at twice the o0 »

resonant frequency. Faor positive, this results in squeezing
of the X, quadrature of the field inside the cavity, and
stretching of theX; quadrature. The two quadratures are de- _4

fined in this paper as S

_ T
Xi=atal, 3.2 FIG. 6. Wigner functions of the steady states produced with

simple feedback fox = /2. (a) and(b) havex =2.2, while(c) and
(d) haveA=0.97. The mesh plots are included to aid the reader’s
interpretation of the contour plots.

X,=—i(a—al). (3.3

Without feedback, the master equation with two-photon driv-
ing and damping will have a stationary solution only for

<1. Thatis,\ is the threshold parameter. extremely sensitive to any parameter variation. This implies
The feedback operator is chosen to be that it is not a suitable regime for the testing of adiabatic
elimination. The most obvious alternative is to choose the

Z=yxa'a. (3.9 maximum feedback regime. It is clear that this is achieved

) with y=(q+ 1/2)w. The states produced are much less sen-
We can get a feel for the effect of this type of feedback bysitive and also have the advantage that, for simple feedback,
using Z in the simple feedback Hamiltonian given in EQ. there is no threshold to the driving strength above which the
(2.6). This represents a detuning of the system cavity proporphoton number becomes infinite. For the remainder of the
tional to the photocurrent. It will cause the master equatiorbaper, we choosg= /2.
to have a Stationary solution regardless mf as will be The two_photon driving Strength was chosen to be as
shown. As the mean photocurrent is equal to the expectatioprge as possible, given the constraints on the maximum ba-
value of the photon number operator for the system, thigjs size that could be simulated. This amplified the interest-
Hamiltonian is akin to & Kerr nonlinearity[19]. In Sec.  ing effects of feedback. Not surprisingly, the simulations of
IINF, a comparison of feedback to such a nonlinearity isthe compound systems are the most computationally inten-

made. sive and provide the upper basis size. It was found that the
limit for the system cavity basis size required that photon
A. Simple feedback numbers above 35 had to be truncated. For an accurate simu-
The master equation for simple feedback is now lation [20], this gives a maximum driving strength of about

N=2.2. Where possible, the compound systems were exam-
. N, 2 ixa'a ined in the same regime as simple feedback, but for some the
p=—zla*=(@)%pl+Dle alp. (3.5 driving threshold of\=1 remains in force, sa=0.97 was
then chosen.
To simplify the numerical analysis, we choose a single feed- The numerical simulations were greatly aided by the use
back strength for which simulations will be run. To aid this of the quantum optics toolbox favATLAB [21]. As noted
decision, the effect of feedback is analyzed. Consider th@bove, we gauged whether the adiabatic elimination is valid
quantityj[efixafa]p. If this is evaluated in the number ba- DY investigating the steady states of the systems. The simple

sis, then we get feedback system involved a small enough Liouvillian that
’ matrix inversion methods can be used. The Wigner function
n e ivaay imy=(e-ixyn-m, 36 of the steady-state density matrix for simple feedback, with
(nl e == plm) = (&9 Ponm 9 A=2.2 and y=/2, is shown in Fig. 6. A plot withx
Now this particular system has the property that,=0 for ~ =0.97 is also included.

[n—m| odd as the two-photon driving is the only source of
coherences. These coherences exist between elements with
[n—m| even. Hence, ify=qm, with q an integer, then the
feedback has no effect. Investigation into the states produced Electro-optic feedback via an atom can be compared to
with a value of feedback close to this revealed that they ar¢he simple feedback just considered if we insert in qL5

B. Electro-optic feedback via an atom
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4 i i i 4 i more similar to the adiabatic state. This shows that the adia-
) @) . & batic elimination is valid in this system for surprisingly small
‘ ‘ ‘ values ofl".
0 == >0 : A comparison of the stationary Wigner functions pro-
duced here with those of simple feedback reveals that there
-2 ' 2 exist vast differences between these feedback schemes. This
4 _4 is not surprising as it is only to first order i@ that the
I -2 0 2 equations are the same, and the parameters we have chosen
1 1 . . . .
. . correspond tZ quite large. The most ot_)V|ous visual differ-
© @ ences include the presence of a shearing effect and the loss
2 gos8 of reflective symmetry in th&, quadrature.
g
<o 8"
5 S C. Electro-optic feedback via a mode
mo.2
» o In Sec. Il C, electro-optic feedback via a mode was con-

-4 -2 )? 2 4 0 o 50 100 sidered. In the limit of the ancilla mode being damped on a
amping rate, I time scale small compared to those of the system(E§9

FIG. 7. (a), (b), and(c) are Wigner functions of the steady states was derived. The feedback operator was seZagK/T' so

produced with electro-optic feedback onto a TLA fprm/2 and  that we could make a comparison to simple feedback. It fol-
A=2.2.(a) is the adiabatically eliminated staté) and(c) represent |OWS that the system coupling oper?t(b?, is of the same
the full dynamics with['=2 and 20, respectivelyd) shows the ~form as the preceding sectioK=ga'a. The couplingV
Bures distance between the adiabatically eliminated state and tigga'a(b+b'")/2 could be physically achieved via a four-
state produced with the full dynamics Esincreases. wave mixing process in g material[19]. The fourth field
would have to have the same frequency as the ancilla cavity
K=IZ=ga'a, whereg=TI"#/2. To test the adiabatic elimi- for conservation of energy.
nation, simulations were run for various valuesTaf It is Now thatZ has been specified, the third term in £2.39
only for largeT that correspondence between the full dy-can be discussed more explicitly. This can be done by con-
namics and the adiabatically eliminated master equation i§idering the evolution of the phase operator, which has an
expected. A physical realization of this coupling is a far-aPpProximate commutation relation with the number operator
detuned atom in the standing wave of a single-mode cavit@f [®.n]=—i [23]. It can then be shown that this term
[19]. This also introduces a term into the system Hamiltoniarfauses phase diffusion at a constant rate, implying that the
of the form so'o, where 8 is the difference in resonant features of the state that are dependent upon a distinct phase
frequency of the atom and system. It is of interest to deter@re lost. With the notable exception that the photon number
mine whether the same results are obtained if the adiabati€ not directly affected, there are many similarities with
elimination is done at the same time as, rather than after, théamping.

large-detuning approximation is made. This is addressed in For simulation, parameters are chosen so tegil'
Appendix B, and the answer is yes. =72, N\=2.2, andF/ZEZZO.OO:I.. The last equallty malin-

The full master equation can be found from E@.16  tains the phase-diffusion term at a small and constant level.
using Eq.(3.1) and theK stated here. The reduced density This ensures that the same state is always produced by the
matrix for the system at steady state needs to be found. On@liabatically eliminated master equation. _
again, the Liouvillian is small enough that we can ¥ét It is worth mentioning how the full dyn_amlcs were simu-
—0 and solve the equatioBW=0 for the nontrivial solu- Iate_d. Due to the jump in the field amplitude of the_ancnla
tion. Simulations were run for values f from 1 to 100, cavity when a detection on the output of the system is made,

with g altered accordingly. Note that the detuning actuallythe baS|s. size required for an accurate simulation is Iarge.
has no effect on the system dynamics. The reduced densit e possibility of a sgcond detection on the system occurring
matrices produced are compared with those found from E ery soon after the first compounds this. In fact, the compu-

. - . . . ational resources available were not sufficient to allow even
(2.24) with the aid of the Bures distance, which gives a mea- a . . .
sure of how distinguishable two mixed stat g(andp ) a quantum trajectory simulatiqi1,24,25 of Eq.(2.29. The
are. The Bures distance is defined[28] B 2 solution was to make a unitary transformation to a frame in

which the evolution of the driven cavity due to feedback was
/ separated from that due to quantum noise. That is, the mean
daured P1.P2) = V21T ‘/p—1p2‘/P—1])' (3.7 amplitude of the field was described classically while the
quantum representation of the noise was maintained. The
All pairs of density matrices of the same size have a Buregnjtary transformation used was
measure that is mapped onto the real numbers between zero
and/2. Figure 7 shows how the state produced by the com- U=exd ef(t)(b—b")/2], (3.8
pound master equation approaches that produced by the adia-

batically eliminated master equation. Asis increased, the
Bures distance decreases and the Wigner functions becorméheref(t) is defined by
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@ (o) @ do O
2 2 2 ‘
T S ‘
>N 0 =<0 580 ><‘“1
-2 -2 -2 [ S S
- - -4 -5
Y4 2 o 2 a Y2 0 2 4 4 2 o 2 4 %% 3 4 1 3 5
X X, X, X,
4 0.3 4 0.5
d (0 (d
2 © 3 @ 2 L 504
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-2 om - m Q.1
-4 0 -4 0
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X Damping rate, T X, Damping rate, T’

FIG. 8. (a), (b), and(c) are Wigner functions of the steady states  FIG. 9. (a), (b), and(c) are Wigner functions of the steady states
produced with electro-optic feedback onto a modeyferm/2 and  produced with all-optical feedback onto a TLA fgr= /2 and\
A=2.2.(a) is the adiabatically eliminated staté) and(c) represent  =0.97.(a) is the adiabatically eliminated stat®) and(c) represent
the full dynamics withl'=10 and 100, respectivelyd) shows the the full dynamics withI'=1 and 10, respectively(d) shows the
Bures distance between the adiabatically eliminated state and tHaures distance between the adiabatically eliminated state and the
state produced with the full dynamics Bsncreases. The error bars state produced with the full dynamics Hsincreases.
are due to statistical error due to averaging over a less than infinite
number of quantum trajectories. Only half error bars are given bedensity matrices for electro-optic feedback onto a mode have
cause, in a high-dimensional Hilbert space, a state with statisticahuch greater structure, meaning that a measure such as the
errors will tend to be farther away from the adiabatically eliminatedBures distancgwhich measures the distinguish ability of

state than the true ensemble average will be. state$ will be more sensitive to small differences. It also is
likely that the parameter regime chosen is one in which this
t system varies quickly, with the result that adiabatic elimina-
f(t)= f_wdsexp[—F(t—s)IZ]l(s). (3.9 tion will only be valid at very largd".

A comparison of the Wigner functiong=igs. §a) and

Here, | (t) is thec-number stochastic photocurrent. The price8(€)] With that produced with simple feedba¢kig. 6a)]
of a reduced basis size is a time-dependent LiouvillianShOWs the expected similarity. It is expected because Eq.
When the transformatiofiv=UWU' is applied to the im- (2.39 only differs from simple feedback due to the presence

plicit master equatiortfeedback is described by a feedback g;tgﬁ];jlfuble commutator noise term, which was chosen to
Hamiltonian instead of the exponentiglan equation is ob- '
tained that is already of an explicit form, i
D. All-optical feedback onto an atom

The basis size of the TLA ensures that simulating the full
dynamics of all-optical feedbackEq. (2.40] is relatively
_ _ easy. However, a threshold driving strength exists=()

+D[a]W+I"D[b]W. (3.10  for this system, which means that the adiabatically elimi-
nated master equation cannot be tested in the same regime as

It can be seen thakf(t) represents the amplitude of the i the preceding sections. Instead, we ket0.97, which

driven cavity. Althoughf(t) is stochastic, it is a smoothed enapled us to perform an accurate simulation with the com-
(nonsingulay version of the photocurrent and can thereforepytational resources available.

be treated without worrying about the stochastic calculus. onpce again we chooskK=ga'a and set 4/T= /2,

Note also that sinc&) contains only ancilla operators, the \hile varyingl” andg. The Bures distance between the states
system state matrixo=Tr,[W] is the same as before, produced by Eq(2.40 and Eq.(2.46 is shown in Fig. 9, as
Trp[W]. are some Wigner functions for the full dynamics and the
The transformed master equation was simulated usingdiabatic state. It can be seen that the state produced with the
guantum trajectory methods. It is shown in Fig. 8 thaf"as full dynamics approaches the adiabatic state at a similar rate,
becomes large, the adiabatically eliminated master equatioasI” is increased, to electro-optic feedback via a TLA.
becomes a very good approximation to the full dynamics. There is a large similarity between the state produced via
Clearly, though,I' has to be pushed to much higher levelssimple feedback in Fig.(6) and that in Fig. &), with the
than the TLA damping for this correspondence to hold. Oneresence of shearing being the most notable difference. This
reason for this is that the Wigner functions of the steady-stateloser correspondence to simple feedback than that of the

W=—i|ga'alb+b'+ef(t)} - %{az— CUBAL
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FIG. 10. (a), (b), and(c) are Wigner functions of the steady
states produced with all-optical feedback onto a modeyfers/2
and A =0.97. (a) is the adiabatically eliminated staté) and (c)
represent the full dynamics withi=1 and 10, respectivelyd)
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G

-

FIG. 11. The first two plots are Wigner functions of the steady
states produced with p= 7/2 nonlinearity.(a) and(b) have driving
strengths ofA =2.2 and 0.97, respectivelyc) shows the Bures
distance between simple and “reversible” feedback Xor 0.97.

shows the Bures distance between the adiabatically eliminated statd) is @ mesh plot of the Wigner function displayed (@.

and the state produced with the full dynamicslagcreases. Half
error bars are used for the same reason as in Fig. 8.

The Heisenberg equation of motion of the annihilation op-

electro-optic feedback systems is not surprising given thagrator due to this Hamiltonian is found to ba=
the adiabatic all-optical master equation was the same asix(a'a)a. Thus, itis clear that thg® nonlinearity causes

simple feedback to a higher ord@econd. The smaller driv-
ing also contributes to the closeness of the states.

E. All-optical feedback via a mode

It was shown in Sec. Il E that in the adiabatic limit all-

optical feedback onto a mode has the same effect as feedi
back onto a TLA. Therefore, the same threshold for the driv

ing strength exists for this systemn € 1).

The basis size required here is not as large as for electr
optic feedback because the photons leak out of the syste
and into the ancilla cavity, giving a smooth variation of pho-
ton number. Despite this, a quantum trajectory simulatio

was still found to be necessary. The results obtained\for
=0.97 and 4/I'=x/2 can be found in Fig. 10. The adia-

batic state is, of course, the same as for all-optical feedba

n

a detuning proportional to the intensity of the field inside the
cavity. In this way, the system has a self-awareness that is
similar to simple feedback, which is why a comparison is
relevant. In fact, it can be shown that the two systems are
classically equivalent given the same choice of the parameter

'Q, For large feedback, the two systems diverge when treated

antum mechanically. One of the main reasons behind this
is that the Kerr effect displays no periodic dependence upon

8t_s magnitude, whereas the simple feedback does. This is

fllustrated in Fig. 11c), where the Bures distance between
{He steady states of the two systems is plotted for varying
The Wigner function of the “reversible feedback” steady
state fory= /2 with A=2.2 and\ =0.97 is given in Figs.
11(a) and 11b), respectively. They are seen to be very dif-

Cﬁgrent from any of the steady states produced by feedback.

onto a TLA. There is a notable difference in the speed at
which the full dynamics approaches this state. At low damp-
ing, the Bures distance is already very low. The conclusion is
that the ancilla mode has a minimal effect on the system

IV. DISCUSSION

A. Summary

when included in an all-optical feedback loop.

F. Comparison with “reversible feedback” generated
by a x® nonlinearity

Finally, we consider the effect of placing)@® material

The description of feedback in compound quantum sys-
tems(where the output from the system is used to control the
evolution of the ancilla, which is reversibly coupled to the
system is greatly simplified if the ancilla can be adiabati-
cally eliminated. We have shown how this can be done for

inside an optical cavity driven by a parametric oscillator.four generic cases, arising from considering two forms of
There is no feedback loop involved. The Hamiltonian generfeedback(all optical or coherent, and electro-optical or inco-

ated by they® nonlinearity(a Kerr nonlinearity is given by
[26]

X
H KerrZE(aT)zaz-

(3.11

heren} and two types of ancillda two-level atom and an
optical modeé. The four resulting master equations for the
system alone are given below. They are the most important
results of this paper. We also include the perturbative expan-
sions of these master equations to third order in the feedback
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operatorZ. All of the equations are identical to first order in orders in the feedback strength. The final result, using their

Z, but differ in second or third order. definitions and our superoperatorsvgith perfect detection
For comparison, we begin with simple feedbdthat is, assumeg

with no ancillg based on detection of the intensity

=h! bout Of the output fieldb,,= bin+ ¢, and using the feed- p=e[a'b'—ab,p]+2I'Dablp+ y,Dlalp
back HamiltonianHq,=1(t)Z. The master equation for this
> w=1(1) q + y, Dlex yab— ya'b")b]p. 4.5
b= —i[H,p]+D[e*iZc]p. @.1) Note that the second term here is the one analogous to the

final term in our Eq(4.3).
The remaining master equations result from trying to repro- Doherty and co-workers consider a strongly interacting
duce this form of feedback via an ancilla. system comprised of an atom inside a cayit9]. The meth-
The first master equation derived using adiabatic elimina®ds used for adiabatic elimination are similar to those used in
tion is for electro-optic feedback via the inversion of a two- this paper. They form QLE’s for operators from any of the
level atom: three subsystem@enter-of-mass motion, internal state, and
the cavity modg and then set the time derivatives of, first,
S o o 02 the internal state operator and, second, the cavity operator, to
p=—i[H,p]+ o dge “Dle "clp. (42 zero. They then substitute into the QLE for the momentum
operatorp, . After a conversion to the explicit form of the
This differs from the simple feedback master equatiéri) ~ QLE, they show that the QLE they derive is compatible with
at second order i. The second is for electro-optic feedback the master equatiotusing their notation
via one quadrature of an optical mode:

i[pg +ip p( 2 arctare 4.6
. ) T — 7 l5=.P L exp — <zl arcta alp, .
p=—i[H,p]+Dle"*c]p+ —D[Z]. 4.3 hl2m 2 2

€

where

Again, this varies from simple feedback at second order. The
size of the extra second-order term is determined byhe gacogk, x
damping rate for the ancilla mode, ard the strength of I=—Qx 4.7

driving of the ancilla mode.

Turning now to all-optical feedback, we have found that e the similarity with our equation resulting from adia-
the same master equation arises regardless of whether th&yic elimination of an optical mode where the coupling is

feedback is via the inversion of a two-level atom or the in-yij the intensity(but of course there is no feedback here so
tensity of an optical mode. It is our operatoc is replaced by the numbera). The derivation
7 of this master equation in Ref10] is not completely rigor-
ex;{ —2i arctanE p. (4.4  ous in that other master equations would also be compatible
with the QLE they derive fop,. However, it would be
Unlike Eq. (4.2), this differs from Eq.(4.1) only at third straightforwar_d, _using the technique we introduced in Sec.
order inZ. Il E, to make it rigorous. _ _ _
The work done on all-optical feedback in this paper fol-
lows that done by Wiseman and Milbuf#]. They were able
to show that all-optical feedback onto a mode could replicate
As mentioned in the Introduction, Slosser and Milb{ifh  electro-optic homodyne-detection feedback, but they could
perform adiabatic elimination of the pump mode of a nonde-only prove equivalence with direct-detection feedback to
generate parametric oscillator. In their system, the pumpecond order. Here, we have shown that this is because the
mode is driven by the output photocurrent from the idlerequivalence only holds to second order. We have done this
mode. The procedure they adopt is similar to that containedly finding the master equation to all orders in the feedback
in Sec. Il B of this paper, in that they expand the densitystrength, and showing it to be of the Lindblad form.
matrix in terms of the lower number states of the pump Showing that all-optical feedback via an ancillze it a
mode. However, in Sec. Il C we have already noted that thi¢gwo-level atom or a modecannot replicate electro-optical
is not appropriate when dealing with direct detection feed-direct detection feedback leads naturally to the question of
back onto anode Higher number states are essential to thewhether a more complicated all-optical feedback scheme can
description of the system if the feedback strength is largeteplicate direct electro-optic feedback. Since the feedback is
For this reason, they limit the feedback strength to small andeplicated to second order, a fruitful approach would seem to
moderate values, with a generalization to larger feedbacke to make the feedback weak, while multiplying the number
contained in their Appendix. This Appendix does not explainof ancillae to compensate. That I¥,ancillae are used, with
the origin of the all-orders feedback term. The techniques o€oupling to the system scaling as\l/where the output of
adiabatic elimination using QLE’s that are presented in thighe system is fed sequentially into all of the ancillae. It can
paper make it easy to treat their system rigorously to albe shown that in the limiN— o, this hypothetical all-optical

c

p=—ilH,pl+D

B. Relation to previous work
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feedback scheme does indeed produce the simple electrifpon use of the identity witlz =K/I", the master equation
optic feedback master equati¢h.1). EqQ. (2.24) becomes Eq(2.25.

C. Conclusion 2. All-optical feedback onto an atom

We have shown that it is possible to greatly simplify the [N order to show that the master equation can be written
description of feedback in compound quantum systems b@s in Eq.(2.48), it is sufficient to show that
adiabatically eliminating the ancilla, to give master equations . :
for the system alone. In essence, we have found the first exfl —2i arctaniZ/2)]p ex 2i arctaiZ/2) ] = p
order inI" ! effect of the ancilla upon the system, whéte =C[Z]A(1+iZ/2)"]p. (A4)
is the ancilla decay rate. We have done this for a variety of
ancillae and forms of feedback, and found good agreementote that7[c] has been omitted as it is a multiplicative
with numerical simulations of the dynamics for the full com- factor on both of the superoperators.
pound quantum system. The master equations in the various We now use the result
cases are quite different, and their range of validibat is, _
how largel’ has to be for them to be validvas also found exf — 2i arctanz/2)]— 1-iz/2
numerically to differ. For the numerical simulations, we of 1+iz/2
course used a particular system, but the equations we derive
are very general. to simplify the left-hand side of the above expression. It can

The primary motivation for this work is the reduction of now be written as
basis size that is necessary to describe the evolution of the ) ) i i
system. It is hoped that the derived equations will prove to 1-izf2 1+iz/2 1+iZ/2 1-iZ/2
be helpful to co-workers. However, we note that numerical 1+izreP1=izrz” 1+izrP1=izrz
testing (to find the regime in which these equations are a
good approxima{io}]may be necessary to determine when itAfter algebraic manipulation, this can be shown to be equal
is appropriate to use them. Apart from these practical adto the right-hand side of EqA4), as required.
vances, we feel that the previously existing confusion in the
literature, as discussed in the Introduction, has been resolved, APPENDIX B: ELECTRO-OPTIC FEEDBACK VIA
and the procedure of adiabatic elimination in compound AN ATOM WITH JAYNES-CUMMINGS COUPLING AND
guantum systems with feedback is now on stable ground. DETUNING

(A5)

(A6)

In this appendix, we take the compound system as being a
single-mode optical cavity, with electro-optic feedback onto

We would like to acknowledge discussions with W. J.a TLA that is placed in the standing wave of the cavity. The
Munro and S. M. Tan. This work was supported in part byJaynes-Cummings coupling that will be usedVis g(ac”
the Australian Research Council. +cga'), with g being a real constant arathe annihilation
operator for the cavity mode. A detuning é-'o is also
included. The following hierarchy of parameters will be in-
vestigated:
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APPENDIX A: PROOF OF LINDBLAD FORM

1. Electro-optic feedback onto a TLA

To show that Eq(2.24 can be written in the Lindblad

form, the following identity will first be established: Of course([H,] is really an operatofcontaining the system
o Hamiltonian termgsso here we are only referring to its scalar
(P-ak]) [ dxge X ORp—p.  (an)  part
0 As will be shown, when the necessary variables are
slaved, a Hamiltonian term of the forgfa'a/é is obtained
Multiplying the equation through by two arbitrary eigen- in the final master equation. With the above scaling, this
states oK, («| and|8), from the left and right, respectively, Hamiltonian is not necessarily small comparedIto This
the following is obtained: makes the adiabatic elimination of the atom more difficult
since the presumption that the atomic relaxation time is
% . much shorter than any system time scale is not necessarily
paB[F+i(a—ﬂ)]f dx e XM+i«=Al=p .. (A2)  true. To do the elimination of the atom rigorously, we there-
0 fore transform to an interaction picture defined b=
—g?(a'a+a'o)/ 8. This transformation has the additional
After the simple integration is performed, the identity is effect of adding a time dependence into the feedback term of
proved. Before using this, the following rearrangement isthe master equation. To nullify this, we will start with a

5>g>T>([H,]. (B1)

made: time-dependent feedback Hamiltonian whose effect, when
moved to the interaction picture, is time-independent. The
azy1-caz)) =@a-cqzp t-1. (A3)  master equation in the Schimger picture is thus
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W=CHW—i[Sc'o+g(ac’+ca’), W]+ D[ a]W
+D[{oexp—ig?t/8)+oexpig?t/d)}la]W. (B2)

In the interaction picture with respect td,, the master

equation is

W=UTC[HJ(UWUNU —i[g2(ata+ o o)/ 8, W]
~i[g(ac’+cah) + soTa, W]+ T D[ o ]W
+Dlexp —imo,/2)a]W. (B3)

For simplification, we will setA = 5+ g?/é.
The expansion of Eq(2.17) is made, with thep’s now

PHYSICAL REVIEW A63 013803

. - 1"92 . g4(aT)2a2
p=C[Hslp+Dlalp+—Dlalp—i| ————.p
A A
2gzc fa]| 1 2gzc g B4
+arpclaiall1-zyclaal]  Jalp. (B4)

In the limit of A>T"2, while still maintainingg®~T'A, the
third and fourth terms drop out, leaving the same master
equation derived in Sec. Il B, witA=2g?a'a/T' A of order
unity. This is the same limit in which Walls and Milburn
arrive at the effective Hamiltonian used in EQ.15 [19].
The third and fourth terms correspond to, respectively, an
increased damping rate angy&’ nonlinearity for the cavity
mode.

Note that the derived Hamiltonian term that cast doubt
upon the adiabatic elimination process has been canceled. Of
course, when we return to the Sctimger picture it will
reappear, leaving a different master equation from that of

understood to be in the interaction picture. A similar adia-sec. |1 B. The solution is to start with an extra Hamiltonian
batic elimination procedure to that contained in Sec. Il B isterm of the form —g?a'a/A when using the Jaynes-

performed, except here an expression ggris required. In

the limit A~I'? andg?~T'A, we find derive the following

master equation:

Cummings coupling. A transformation to the interaction pic-
ture is then not required, nor is the time dependence in the
feedback.
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