62 research outputs found

    Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS

    Get PDF
    BACKGROUND: Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate nuclear factor-κB (NF-κB) in vitro. In addition, we investigated the impact of dexamethasone and budesonide on these processes. METHODS: Griess reaction was used to measure the nitrite level. Western blot and a semi-quantitative RT-PCR were performed to detect iNOS expression. Electrophoretic mobility shift assay (EMSA) was performed to analyze the activation of NF-κB. RESULTS: We found that LPS stimulated the rat alveolar macrophages to produce NO in a dose (≥10 ng/ml) and time dependent manner (p < 0.05). This effect was further enhanced by IFN-γ (≥10 IU/ml, p < 0.05), but was attenuated by budesonide (10(-4)–10(-10) M) and dexamethasone (10(-4)–10(-6) M) (p < 0.05). The mRNA and protein levels of iNOS were also induced in response to LPS and attenuated by steroids. LPS triggered NF-κB activation, a mechanism responsible for the iNOS expression. CONCLUSION: Our findings imply that Gram-negative bacterial infection and the inflammatory responses are important factors in the development of CLD. The down-regulatory effect of steroids on iNOS expression and NO production might explain the beneficial effect of steroids in neonates with CLD

    "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment

    Get PDF
    Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract

    A synthetic cyclized antimicrobial peptide with potent effects against drug resistant skin pathogens

    Get PDF
    Acknowledgments We would like to thank Anna Blasi-Romero for helping with the set-up of the initial scanning electron microscopy experiments. This project was partially supported by the Stiftelsen Olle Engkvist Byggmästare (AB 186 678), Region Stockholm (AB, ALF project 995080), a fellowship grant from the EPSRC (no. EP/S027246/1, W.E.H.), the Bo Rydin Foundation (no. F30/20; NF), the Swedish Research Council (# no. 2011-3403; UG); and Postdoctoral scholarship by Elisabeth and Alfred Ahlqvists Stiftelse, Apotekarsocieteten (TM). The graphical abstract was created with a BioRender standard academic license.Peer reviewedPublisher PD

    Rapid Phenotypic Antibiotic Susceptibility Testing of Uropathogens Using Optical Signal Analysis on the Nanowell Slide

    Get PDF
    Achieving fast antimicrobial susceptibility results is a primary goal in the fight against antimicrobial resistance. Standard antibiotic susceptibility testing (AST) takes, however, at least a day from patient sample to susceptibility profile. Here, we developed and clinically validated a rapid phenotypic AST based on a miniaturized nanotiter plate, the nanowell slide, that holds 672 wells in a 500 nl format for bacterial cultivation. The multitude of nanowells allows multiplexing with a panel of six antibiotics relevant for urinary tract infections. Inclusion of seven concentrations per antibiotic plus technical replicates enabled us to determine a precise minimum inhibitory concentration for 70 clinical uropathogenic Escherichia coli isolates. By combining optical recordings of bacterial growth with an algorithm for optical signal analysis, we calculated Tlag, the point of transition from lag to exponential phase, in each nanoculture. Algorithm-assisted analysis determined antibiotic susceptibility as early as 3 h 40 min. In comparison to standard disk diffusion assays, the nanowell AST showed a total categorical agreement of 97.9% with 2.6% major errors and 0% very major errors for all isolate-antibiotic combination tested. Taking advantage of the optical compatibility of the nanowell slide, we performed microscopy to illustrate its potential in defining susceptibility profiles based on bacterial morphotyping. The excellent clinical performance of the nanowell AST, combined with a short detection time, morphotyping, and the very low consumption of reagents clearly show the advantage of this phenotypic AST as a diagnostic tool in a clinical setting

    Containment of Antibiotic REsistance-measures to improve antibiotic use in pregnancy, childbirth and young children (CAREChild): a protocol of a prospective, quasiexperimental interventional study in Lao PDR.

    Get PDF
    INTRODUCTION: Antibiotics are essential to treat infections during pregnancy and to reduce both maternal and infant mortality. Overall use, but especially non-indicated use, and misuse of antibiotics are drivers of antibiotic resistance (ABR). High non-indicated use of antibiotics for uncomplicated vaginal deliveries is widespread in many parts of the world. Similarly, irrational use of antibiotics is reported for children. There is scarcity of evidence regarding antibiotic use and ABR in Lao PDR (Laos). The overarching aim of this project is to fill those knowledge gaps and to evaluate a quality improvement intervention. The primary objective is to estimate the proportion of uncomplicated vaginal deliveries where antibiotics are used and to compare its trend before and after the intervention. METHODS AND ANALYSIS: This 3-year, prospective, quasiexperimental study without comparison group includes a formative and interventional phase. Data on antibiotic use during delivery will be collected from medical records. Knowledge, attitudes and reported practices on antibiotic use in pregnancy, during delivery and for children, will be collected from women through questionnaires. Healthcare providers' knowledge, attitudes and practices of antibiotics administration for pregnant women, during delivery and for children, will be collected via adapted questionnaires. Perceptions regarding antibiotics will be explored through focus group discussions with women and individual interviews with key stakeholders. Faecal samples for culturing of Escherichia coli and Klebsiella spp. and antibiotic susceptibility testing will be taken before, during and 6 months after delivery to determine colonisation of resistant strains. The planned intervention will comprise training workshops, educational materials and social media campaign and will be evaluated using interrupted time series analysis. ETHICS AND DISSEMINATION: The project received ethical approval from the National Ethics Committee for Health Research, Ministry of Health, Laos. The results will be disseminated via scientific publications, conference presentations and communication with stakeholders. TRAIL REGISTRATION NUMBER: ISRCTN16217522; Pre-results

    Antibiotic Prescribing in Connection to Childbirth: An Observational Study in Two Districts in Lao PDR

    Get PDF
    Overuse and misuse of antibiotics has frequently been reported for obstetric conditions and procedures, which may impact both the mother and the unborn baby and increase antibiotic resistance. This study aimed to investigate the antibiotic prescribing pattern in connection to childbirth in two districts in Lao PDR. It is a cross-sectional observational study. Antibiotic prescription data related to childbirth was collected via reviews of medical records in two district hospitals and five health centers in Lao PDR from September 2019 to November 2020. In total, antibiotic prescription data for 1777 women were extracted from their medical records. It was found that all women received antibiotics during in-patient care irrespective of delivery mode. When in hospital, 85.5% of the women who underwent a caesarean section got antibiotic treatment for 5 days and women who had a vaginal delivery usually had antibiotic treatment for one day or less. All the women got oral antibiotics for an additional 4–5 days upon discharge. Antibiotic prescription rate in connection to childbirth was very high in comparison with the WHO guidelines, and antibiotics were used extensively in the participating health facilities. Interventions to guide appropriate prescribing behavior in relation to childbirth are urgently needed in Lao PDR

    Antibiotic knowledge, attitudes and reported practice during pregnancy and six months after birth: a follow- up study in Lao PDR.

    Get PDF
    BACKGROUND: Antibiotics are important medicines to prevent maternal and child morbidity and mortality. Women's knowledge and attitudes towards antibiotic use influence their practice. When they become mothers, this may be mirrored in the use of antibiotics for their newborn children. The current study aimed to assess knowledge, attitudes, and reported practice of pregnant women regarding antibiotic use and antibiotic resistance as well as their approach towards antibiotic use for their newborn babies. METHODS: This was a follow-up study with data collected via structured interviews between September 2019 and August 2020 in Feuang (rural) and Vangvieng (urban) districts in Vientiane province, Lao PDR. We identified and invited all women attending antenatal care in their third trimester of pregnancy in the selected areas. Using a structured questionnaire at third trimester of pregnancy we captured data on knowledge regarding antibiotic use and resistance. We collected information on attitudes and reported practice at two time points: (i) at third trimester of pregnancy and (ii) 6 months after birth. Univariate analysis and frequency distributions were used to study pattern of responses. Chi-square and Mann-Whitney tests were used to compare categorical and continuous variables respectively. P value < 0.05 was considered statistically significant. RESULTS: We surveyed 539 women with a mean age of 25 years. Two oral antibiotics, i) ampicillin and ii) amoxicillin were correctly identified by 68 and 47% of participants respectively. Only 24% of women (19% in Feuang and 29% in Vangvieng) answered correctly that antibiotics are effective against bacterial infections. The most prevalent response was "I don't know" suggesting the questions were challenging. Significantly less women would use antibiotics from a previous illness for their child than for themselves (16% vs 29%), however they would be more willing to use antibiotics for their baby even in case of mild symptoms (29% vs 17% while pregnant). The majority of antibiotics were prescribed by healthcare providers and 46% of children with the common cold received antibiotics. CONCLUSIONS: Women's knowledge was sub-optimal, still, they manifested appropriate attitudes towards antibiotic use during pregnancy and for their child. Nearly half of children received antibiotics for the common cold. There is a need for context adapted programs aiming at improving women's knowledge, as well as healthcare providers, emphasising rational antibiotic prescribing during pregnancy and for children

    Vitamin D Induction of the Human Antimicrobial Peptide Cathelicidin in the Urinary Bladder

    Get PDF
    The urinary tract is frequently being exposed to potential pathogens and rapid defence mechanisms are therefore needed. Cathelicidin, a human antimicrobial peptide is expressed and secreted by bladder epithelial cells and protects the urinary tract from infection. Here we show that vitamin D can induce cathelicidin in the urinary bladder. We analyzed bladder tissue from postmenopausal women for expression of cathelicidin, before and after a three-month period of supplementation with 25-hydroxyvitamin D3 (25D3). Cell culture experiments were performed to elucidate the mechanisms for cathelicidin induction. We observed that, vitamin D per se did not up-regulate cathelicidin in serum or in bladder tissue of the women in this study. However, when the bladder biopsies were infected with uropathogenic E. coli (UPEC), a significant increase in cathelicidin expression was observed after 25D3 supplementation. This observation was confirmed in human bladder cell lines, even though here, cathelicidin induction occurred irrespectively of infection. Vitamin D treated bladder cells exerted an increased antibacterial effect against UPEC and colocalization to cathelicidin indicated the relevance of this peptide. In the light of the rapidly growing problem of resistance to common urinary tract antibiotics, we suggest that vitamin D may be a potential complement in the prevention of UTI

    Analysis of the Ribonuclease a superfamily of antimicrobial peptides in patients undergoing chronic peritoneal dialysis

    Get PDF
    Infectious peritonitis is a common complication in patients undergoing chronic peritoneal dialysis (PD), limiting the duration of PD as a modality for renal replacement therapy and increasing patient morbidity and mortality. Antimicrobial peptides (AMPs) serve critical roles in mucosal defense, but their expression and activity during peritonitis are poorly understood. We hypothesized that AMPs belonging to the Ribonuclease (RNase) A Superfamily are present in peritoneal fluid and increase during peritonitis in patients undergoing chronic PD. In the absence of peritonitis, we detected RNase 3, RNase 6, and RNase 7 in cell-free supernatants and viable cells obtained from peritoneal fluid of chronic PD patients. The cellular sources of these RNases were eosinophils (RNase 3), macrophages (RNase 6), and mesothelial cells (RNase 7). During peritonitis, RNase 3 increased 55-fold and RNase 7 levels increased 3-fold on average, whereas RNase 6 levels were unchanged. The areas under the receiver-operating characteristic curves for RNase 3 and RNase 7 were 0.99 (95% confidence interval (CI): 0.96–1.0) and 0.79 (95% CI: 0.64–0.93), respectively, indicating their potential as biomarkers of peritonitis. Discrete omental reservoirs of these RNases were evident in patients with end stage kidney disease prior to PD initiation, and omental RNase 3 reactive cells increased in patients undergoing PD with a history of peritonitis. We propose that constitutive and inducible pools of antimicrobial RNases form a network to shield the peritoneal cavity from microbial invasion in patients undergoing chronic PD

    Uropathogenic Escherichia coli Modulates Immune Responses and Its Curli Fimbriae Interact with the Antimicrobial Peptide LL-37

    Get PDF
    Bacterial growth in multicellular communities, or biofilms, offers many potential advantages over single-cell growth, including resistance to antimicrobial factors. Here we describe the interaction between the biofilm-promoting components curli fimbriae and cellulose of uropathogenic E. coli and the endogenous antimicrobial defense in the urinary tract. We also demonstrate the impact of this interplay on the pathogenesis of urinary tract infections. Our results suggest that curli and cellulose exhibit differential and complementary functions. Both of these biofilm components were expressed by a high proportion of clinical E. coli isolates. Curli promoted adherence to epithelial cells and resistance against the human antimicrobial peptide LL-37, but also increased the induction of the proinflammatory cytokine IL-8. Cellulose production, on the other hand, reduced immune induction and hence delayed bacterial elimination from the kidneys. Interestingly, LL-37 inhibited curli formation by preventing the polymerization of the major curli subunit, CsgA. Thus, even relatively low concentrations of LL-37 inhibited curli-mediated biofilm formation in vitro. Taken together, our data demonstrate that biofilm components are involved in the pathogenesis of urinary tract infections by E. coli and can be a target of local immune defense mechanisms
    corecore