913 research outputs found

    Electron quantum dynamics in closed and open potentials at high magnetic fields: Quantization and lifetime effects unified by semicoherent states

    Full text link
    We have developed a Green's function formalism based on the use of an overcomplete semicoherent basis of vortex states, specially devoted to the study of the Hamiltonian quantum dynamics of electrons at high magnetic fields and in an arbitrary potential landscape smooth on the scale of the magnetic length. This formalism is used here to derive the exact Green's function for an arbitrary quadratic potential in the special limit where Landau level mixing becomes negligible. This solution remarkably embraces under a unified form the cases of confining and unconfining quadratic potentials. This property results from the fact that the overcomplete vortex representation provides a more general type of spectral decomposition of the Hamiltonian operator than usually considered. Whereas confining potentials are naturally characterized by quantization effects, lifetime effects emerge instead in the case of saddle-point potentials. Our derivation proves that the appearance of lifetimes has for origin the instability of the dynamics due to quantum tunneling at saddle points of the potential landscape. In fact, the overcompleteness of the vortex representation reveals an intrinsic microscopic irreversibility of the states synonymous with a spontaneous breaking of the time symmetry exhibited by the Hamiltonian dynamics.Comment: 19 pages, 4 figures ; a few typos corrected + some passages in Sec. V rewritte

    Dynamical transitions in correlated driven diffusion in a periodic potential

    Full text link
    The diffusion of a two-dimensional array of particles driven by a constant force in the presence of a periodic external potential exhibits a hierarchy of dynamical phase transitions when the driving force is varied. This behavior can be explained by a simple phenomenological approach which reduces the system of strongly interacting particles to weakly interacting quasi-particles (kinks). The richness of the strongly coupled system is however not lost because, contrary to a single-Brownian particle, the array shows an hysteretic behavior even at non-zero temperature. The present investigation can be viewed as a first step toward understanding nanotribology.Comment: 4 pages, 3 pictures, revtex to appear in Phys Rev. Let

    Solitonic-exchange mechanism of surface~diffusion

    Full text link
    We study surface diffusion in the framework of a generalized Frenkel-Kontorova model with a nonconvex transverse degree of freedom. The model describes a lattice of atoms with a given concentration interacting by Morse-type forces, the lattice being subjected to a two-dimensional substrate potential which is periodic in one direction and nonconvex (Morse) in the transverse direction. The results are used to describe the complicated exchange-mediated diffusion mechanism recently observed in MD simulations [J.E. Black and Zeng-Ju Tian, Phys. Rev. Lett. {\bf 71}, 2445-2448(1993)].Comment: 22 Revtex pages, 9 figures to appear in Phys. Rev.

    Dynamical phase diagram of the dc-driven underdamped Frenkel-Kontorova chain

    Full text link
    Multistep dynamical phase transition from the locked to the running state of atoms in response to a dc external force is studied by MD simulations of the generalized Frenkel-Kontorova model in the underdamped limit. We show that the hierarchy of transition recently reported [Braun et al, Phys. Rev. Lett. 78, 1295 (1997)] strongly depends on the value of the friction constant. A simple phenomenological explanation for the friction dependence of the various critical forces separating intermediate regimes is given.Comment: 12 Revtex Pages, 4 EPS figure

    Hyperfine interaction in InAs/GaAs self-assembled quantum dots : dynamical nuclear polarization versus spin relaxation

    Get PDF
    We report on the influence of hyperfine interaction on the optical orientation of singly charged excitons X+ and X- in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50kHz modulated excitation polarization, which becomes however strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ~4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Eventually, we emphasize the similarities and differences between X+ and X- trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description.Comment: 10 pages, 5 figure

    Fuel Cell Airframe Integration Study for Short-Range Aircraft

    Get PDF
    The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft

    Proton diffusivity in the BaZr0.9Y0.1O3−ή proton conductor

    Get PDF
    The thermally activated proton diffusion in BaZr0.9Y0.1O3−ή was studied with electrochemical impedance spectroscopy (IS) and quasi-elastic neutron scattering (QENS) in the temperature range 300-900K. The diffusivities for the bulk material and the grain boundaries as obtained by IS obey an Arrhenius law with activation energies of 0.46eV and 1.21eV, respectively. The activation energies obtained by IS for the bulk are 0.26eV above 700K and 0.46eV, below 700K. The total diffusivity as obtained by IS is by one order of magnitude lower than the microscopic diffusivity as obtained by QENS. The activation energies obtained by QENS are 0.13eV above 700K and 0.04eV, below 700K. At about 700K, the diffusion constants for IS and QENS have a remarkable crossover, suggesting two processes with different activation energie

    Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial

    Get PDF
    Copyright @ 2012 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Motor imagery (MI) when combined with physiotherapy can offer functional benefits after stroke. Two MI integration strategies exist: added and embedded MI. Both approaches were compared when learning a complex motor task (MT): ‘Going down, laying on the floor, and getting up again’. Methods: Outpatients after first stroke participated in a single-blinded, randomised controlled trial with MI embedded into physiotherapy (EG1), MI added to physiotherapy (EG2), and a control group (CG). All groups participated in six physiotherapy sessions. Primary study outcome was time (sec) to perform the motor task at pre and post-intervention. Secondary outcomes: level of help needed, stages of MT-completion, independence, balance, fear of falling (FOF), MI ability. Data were collected four times: twice during one week baseline phase (BL, T0), following the two week intervention (T1), after a two week follow-up (FU). Analysis of variance was performed. Results: Thirty nine outpatients were included (12 females, age: 63.4 ± 10 years; time since stroke: 3.5 ± 2 years; 29 with an ischemic event). All were able to complete the motor task using the standardised 7-step procedure and reduced FOF at T0, T1, and FU. Times to perform the MT at baseline were 44.2 ± 22s, 64.6 ± 50s, and 118.3 ± 93s for EG1 (N = 13), EG2 (N = 12), and CG (N = 14). All groups showed significant improvement in time to complete the MT (p < 0.001) and degree of help needed to perform the task: minimal assistance to supervision (CG) and independent performance (EG1+2). No between group differences were found. Only EG1 demonstrated changes in MI ability over time with the visual indicator increasing from T0 to T1 and decreasing from T1 to FU. The kinaesthetic indicator increased from T1 to FU. Patients indicated to value the MI training and continued using MI for other difficult-to-perform tasks. Conclusions: Embedded or added MI training combined with physiotherapy seem to be feasible and benefi-cial to learn the MT with emphasis on getting up independently. Based on their baseline level CG had the highest potential to improve outcomes. A patient study with 35 patients per group could give a conclusive answer of a superior MI integration strategy.The research project was partially funded by the Gottfried und Julia Bangerter-Rhyner Foundation

    Timelike form factors at high energy

    Full text link
    The difference between the timelike and spacelike meson form factors is analysed in the framework of perturbative QCD with Sudakov effects included. It is found that integrable singularities appear but that the asymptotic behavior is the same in the timelike and spacelike regions. The approach to asymptotia is quite slow and a rather constant enhancement of the timelike value is expected at measurable large Q2Q^{2}. This is in agreement with the trend shown by experimental data.Comment: 17 pages, report DAPNIA/SPhN 94 0
    • 

    corecore