1,078 research outputs found

    Nuclear Fusion via Triple Collisions in Solar Plasma

    Get PDF
    We consider several nuclear fusion reactions that take place at the center of the sun, which are omitted in the standard pp-chain model. More specifically the reaction rates of the nonradiative production of ^3He, ^7Be, and ^8B nuclei in triple collisions involving electrons are estimated within the framework of the adiabatic approximation. These rates are compared with those of the corresponding binary fusion reactions.Comment: 3 pages, latex (RevTex), no figure

    Thermal fluctuations in the interacting pion gas

    Get PDF
    We derive the two-particle fluctuation correlator in a thermal gas of pi-mesons to the lowest order in an interaction due to a resonance exchange. A diagrammatic technique is used. We discuss how this result can be applied to event-by-event fluctuations in heavy-ion collisions, in particular, to search for the critical point of QCD. As a practical example, we determine the shape of the rapidity correlator.Comment: 12 pages, 4 figures, RevTe

    Meta-Stable Brane Configuration with Orientifold 6 Plane

    Get PDF
    We present the intersecting brane configuration of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua in four dimensional N=1 supersymmetric SU(N_c) gauge theory with a symmetric flavor, a conjugate symmetric flavor and fundamental flavors. By studying the previously known supersymmetric M5-brane curve, the M-theory lift for this type IIA brane configuration, which consists of NS5-branes, D4-branes, D6-branes and an orientifold 6-plane, is analyzed.Comment: 21 pp, 3 colored figures; stability arguments added in page 11 and 12, a typo in figure 3 corrected, and to appear in JHE

    Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV

    Full text link
    Chemical and thermal freeze-out of the hadronic fireball formed in symmetric collisions of light, intermediate-mass, and heavy nuclei at beam energies between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated, isospin-symmetric ideal hadron gas with grand-canonical baryon-number conservation. For each collision system the baryochemical potential mu_B and the chemical freeze-out temperature T_c are deduced from the inclusive neutral pion and eta yields which are augmented by interpolated data on deuteron production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV, while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with system size, whereas T_c remains constant. The centrality dependence of the freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV. For the highest beam energies the fraction of nucleons excited to resonance states reaches freeze-out values of nearly 15 %, suggesting resonance densities close to normal nuclear density at maximum compression. In contrast to the particle yields, which convey the status at chemical freeze-out, the shapes of the related transverse-mass spectra do reflect thermal freeze-out. The observed thermal freeze-out temperatures T_th are equal to or slightly lower than T_c, indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure

    Multi-Channel Inverse Scattering Problem on the Line: Thresholds and Bound States

    Get PDF
    We consider the multi-channel inverse scattering problem in one-dimension in the presence of thresholds and bound states for a potential of finite support. Utilizing the Levin representation, we derive the general Marchenko integral equation for N-coupled channels and show that, unlike to the case of the radial inverse scattering problem, the information on the bound state energies and asymptotic normalization constants can be inferred from the reflection coefficient matrix alone. Thus, given this matrix, the Marchenko inverse scattering procedure can provide us with a unique multi-channel potential. The relationship to supersymmetric partner potentials as well as possible applications are discussed. The integral equation has been implemented numerically and applied to several schematic examples showing the characteristic features of multi-channel systems. A possible application of the formalism to technological problems is briefly discussed.Comment: 19 pages, 5 figure

    Thermal Recombination: Beyond the Valence Quark Approximation

    Full text link
    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.Comment: 5 pages, 5 figure

    Meta-Stable Supersymmetry Breaking in a Cooling Universe

    Get PDF
    We look at the recently proposed idea that susy breaking can be accomplished in a meta-stable vacuum. In the context of one of the simplest models (the Seiberg-dual of super-QCD), we address the following question: if we look at this theory as it cools from high temperature, is it at all possible that we can end up in a susy-breaking meta-stable vacuum? To get an idea about the answer, we look at the free energy of the system at high temperature. We conclude that the phase-structure of the free-energy as the temperature drops, is indeed such that there is a second order phase transition in the direction of the non-susy vacuum at a finite T=TcQT=T_c^Q. On the other hand, the potential barrier in the direction of the susy vacuum is there all the way till T∌0T \sim 0.Comment: writing full author name
    • 

    corecore