33,893 research outputs found

    Magnetic fields in nearby galaxies

    Get PDF
    We describe a recent full-polarization radio continuum survey, performed using the Westerbork Synthesis Radio Telescope (WSRT), of several nearby galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample. The WSRT-SINGS survey has been utilized to study the polarized emission and Faraday rotation measures (RMs) in the targets, and reveals an important new observational trend. The azimuthal distribution of polarized flux seems to be intimately related to the kinematic orientation of galaxies, such that in face-on galaxies the lowest level of polarized flux is detected along the kinematic major axis. In highly inclined galaxies, the polarized flux is minimized on both ends of the major axis, and peaks near the minor axis. Using models of various three-dimensional magnetic field geometries, and including the effects of turbulent depolarization in the midplane, we are able to reproduce the qualitative distribution of polarized flux in the target galaxies, its variation with inclination, and the distribution of RMs, thereby constraining the global magnetic field structure in galaxies. Future radio telescope facilities, now being planned and constructed, will have properties making them extremely well-suited to perform vastly larger surveys of this type, and are thereby poised to significantly increase our understanding of the global structure of galactic magnetic fields. We discuss progress that can be made using surveys which will be realized with these new facilities, focusing in particular on the Aperture Tile in Focus (APERTIF) and Australian Square Kilometre Array Pathfinder (ASKAP) telescopes, both based on Focal Plane Array (FPA) designs, which are expected to be particularly useful for wide-field polarization applications.Comment: In proceedings of "Panoramic Radio Astronomy" conference held 2-5 June 2009, Groningen, the Netherlands. 6 pages, 2 figure

    Boundary conditions at the mobility edge

    Full text link
    It is shown that the universal behavior of the spacing distribution of nearest energy levels at the metal--insulator Anderson transition is indeed dependent on the boundary conditions. The spectral rigidity ÎŁ2(E)\Sigma^2(E) also depends on the boundary conditions but this dependence vanishes at high energy EE. This implies that the multifractal exponent D2D_2 of the participation ratio of wave functions in the bulk is not affected by the boundary conditions.Comment: 4 pages of revtex, new figures, new abstract, the text has been changed: The large energy behavior of the number variance has been found to be independent of the boundary condition

    Analysis methodology for flow-level evaluation of a hybrid mobile-sensor network

    Get PDF
    Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic

    Pomeron Vertices in Perturbative QCD in Diffractive Scattering

    Full text link
    We analyse the momentum space triple Pomeron vertex in perturbative QCD. In addition to the standard form of this vertex which is used in the context of total cross-sections at high energies and in the QCD reggeon field theory, there exists an alternative form which has to be used in the study of high-mass diffraction. We review and analyse the relation between these two versions. We discuss some implications for the BK-equation. In the second part of our paper we extend this analysis to the Pomeron-Odderon-Odderon vertex.Comment: 23 pages, 5 figures, Late

    Solitonic-exchange mechanism of surface~diffusion

    Full text link
    We study surface diffusion in the framework of a generalized Frenkel-Kontorova model with a nonconvex transverse degree of freedom. The model describes a lattice of atoms with a given concentration interacting by Morse-type forces, the lattice being subjected to a two-dimensional substrate potential which is periodic in one direction and nonconvex (Morse) in the transverse direction. The results are used to describe the complicated exchange-mediated diffusion mechanism recently observed in MD simulations [J.E. Black and Zeng-Ju Tian, Phys. Rev. Lett. {\bf 71}, 2445-2448(1993)].Comment: 22 Revtex pages, 9 figures to appear in Phys. Rev.

    Unitarity of the tree approximation to the Glauber AA amplitude for large A

    Full text link
    The nucleus-nucleus Glauber amplitude in the tree approximation is studied for heavy participant nuclei. It is shown that, contrary to previous published results, it is not unitary for realistic values of nucleon-nucleon cross-sections.Comment: 15 pages, 1 figure, 1 table. Submitted to Yad. Fi

    Decoherence in a system of many two--level atoms

    Full text link
    I show that the decoherence in a system of NN degenerate two--level atoms interacting with a bosonic heat bath is for any number of atoms NN governed by a generalized Hamming distance (called ``decoherence metric'') between the superposed quantum states, with a time--dependent metric tensor that is specific for the heat bath.The decoherence metric allows for the complete characterization of the decoherence of all possible superpositions of many-particle states, and can be applied to minimize the over-all decoherence in a quantum memory. For qubits which are far apart, the decoherence is given by a function describing single-qubit decoherence times the standard Hamming distance. I apply the theory to cold atoms in an optical lattice interacting with black body radiation.Comment: replaced with published versio

    Exact Study of the Effect of Level Statistics in Ultrasmall Superconducting Grains

    Get PDF
    The reduced BCS model that is commonly used for ultrasmall superconducting grains has an exact solution worked out long ago by Richardson in the context of nuclear physics. We use it to check the quality of previous treatments of this model, and to investigate the effect of level statistics on pairing correlations. We find that the ground state energies are on average somewhat lower for systems with non-uniform than uniform level spacings, but both have an equally smooth crossover from the bulk to the few-electron regime. In the latter, statistical fluctuations in ground state energies strongly depend on the grain's electron number parity.Comment: 4 pages, 3 eps figs, RevTe
    • …
    corecore