research

Magnetic fields in nearby galaxies

Abstract

We describe a recent full-polarization radio continuum survey, performed using the Westerbork Synthesis Radio Telescope (WSRT), of several nearby galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample. The WSRT-SINGS survey has been utilized to study the polarized emission and Faraday rotation measures (RMs) in the targets, and reveals an important new observational trend. The azimuthal distribution of polarized flux seems to be intimately related to the kinematic orientation of galaxies, such that in face-on galaxies the lowest level of polarized flux is detected along the kinematic major axis. In highly inclined galaxies, the polarized flux is minimized on both ends of the major axis, and peaks near the minor axis. Using models of various three-dimensional magnetic field geometries, and including the effects of turbulent depolarization in the midplane, we are able to reproduce the qualitative distribution of polarized flux in the target galaxies, its variation with inclination, and the distribution of RMs, thereby constraining the global magnetic field structure in galaxies. Future radio telescope facilities, now being planned and constructed, will have properties making them extremely well-suited to perform vastly larger surveys of this type, and are thereby poised to significantly increase our understanding of the global structure of galactic magnetic fields. We discuss progress that can be made using surveys which will be realized with these new facilities, focusing in particular on the Aperture Tile in Focus (APERTIF) and Australian Square Kilometre Array Pathfinder (ASKAP) telescopes, both based on Focal Plane Array (FPA) designs, which are expected to be particularly useful for wide-field polarization applications.Comment: In proceedings of "Panoramic Radio Astronomy" conference held 2-5 June 2009, Groningen, the Netherlands. 6 pages, 2 figure

    Similar works