49 research outputs found

    Fail-safe system for activity cooled supersonic and hypersonic aircraft

    Get PDF
    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages

    Falling into Time in Homer's Iliad

    Full text link
    This paper addresses the question of the relation between mortal and immortal time in the Iliad as it is represented by the physical act of falling. I begin by arguing that falling serves as a point of reference throughout the poem for a concept of time that is specifically human. It is well known that mortals fall at the moment of death in the poem, but it has not been recognized that the movement of the fall is also connected with the time of birth, aging, and generation. In light of the significance of failing for mortals, I then go on to examine the problematic case of two particular immortals who fall in the Iliad. When Hephaestus tumbles down to earth from Olympus. and when Ares is knocked flat on the battlefield, both gods, I argue, also "fall into" human time. This complicates their status as ageless and eternal beings, and draws into question the different temporal registers at work in the narrative (such as repetition, "long time," and time that is steady or continuous [empedos]). The single action of failing brings together several key concepts in the poem which hinge on the issue of the separation between the mortal and immortal spheres in the Iliad

    Digital repeat photography for phenological research in forest ecosystems

    No full text
    Digital repeat photography has the potential to become an important long-term data source for phenological research given its advantages in terms of logistics, continuity, consistency and objectivity over traditional assessments of vegetation status by human observers. Red-green-blue (RGB) color channel information from digital images can be separately extracted as digital numbers, and subsequently summarized through color indices such as excess green (ExG = 2G − [R + B]) or through nonlinear transforms to chromatic coordinates or other color spaces. Previous studies have demonstrated the use of ExG and the green chromatic coordinate (gcc = G/[R + G + B]) from digital landscape image archives for tracking canopy development but several methodological questions remained unanswered. These include the effects of diurnal, seasonal and weather-related changes in scene illumination on ExG and gcc, and digital camera and image file format choice. We show that gcc is generally more effective than ExG in suppressing the effects of changes in scene illumination. To further reduce these effects we propose a moving window approach that assigns the 90th percentile of all daytime values within a three-day window to the center day (per90), resulting in three-day ExG and gcc. Using image archives from eleven forest sites in North America, we demonstrate that per90 is able to further reduce unwanted variability in ExG and gcc due to changes in scene illumination compared to previously used mean mid-day values of ExG and gcc. Comparison of eleven different digital cameras at Harvard Forest (autumn 2010) indicates that camera and image file format choice might be of secondary importance for phenological research: with the exception of inexpensive indoor webcams, autumn patterns of changes in gcc and ExG from images in common JPEG image file format were in good agreement, especially toward the end of senescence. Due to its greater effectiveness in suppressing changes in scene illumination, especially in combination with per90, we advocate the use of gcc for phenological research. Our results indicate that gcc from different digital cameras can be used for comparing the timing of key phenological events (e.g., complete leaf coloring) across sites. However, differences in how specific cameras “see” the forest canopy may obscure subtle phenological changes that could be detectable if a common protocol was implemented across sites

    The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes

    No full text
    A new methodology for establishing the spatial representativeness of tower albedo measurements that are routinely used in validation of satellite retrievals from global land surface albedo and reflectance anisotropy products is presented. This method brings together knowledge of the intrinsic biophysical properties of a measurement site, and the surrounding landscape to produce a number of geostatistical attributes that describe the overall variability, spatial extent, strength of the spatial correlation, and spatial structure of surface albedo patterns at separate seasonal periods throughout the year. Variogram functions extracted from Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo using multiple spatial and temporal thresholds were used to assess the degree to which a given point (tower) measurement is able to capture the intrinsic variability of the immediate landscape extending to a satellite pixel. A validation scheme was implemented over a wide range of forested landscapes, looking at both deciduous and coniferous sites, from tropical to boreal ecosystems. The experiment focused on comparisons between tower measurements of surface albedo acquired at local solar noon and matching retrievals from the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/albedo algorithm. Assessments over a select group of field stations with comparable landscape features and daily retrieval scenarios further demonstrate the ability of this technique to identify measurement sites that contain the intrinsic spatial and seasonal features of surface albedo over sufficiently large enough footprints for use in modeling and remote sensing studies. This approach, therefore, improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel
    corecore