92 research outputs found

    The Virulence of S. marcescens Strains Isolated From Contaminated Blood Products Is Divergent in the C. elegans Infection Model

    Get PDF
    Bacterial contamination of platelet concentrates (PCs) can occur during blood donation or PC processing, necessitating routine screening to identify contaminated products in efforts to prevent adverse transfusion reactions in recipient patients. Serratia marcescens is a common bacterial contaminant, and its resilient nature coupled with genetic promiscuity imbue this environmental bacterium with resistance to disinfectants and antibiotics enhancing bacterial virulence. In this study, we aim to understand adaptive survival mechanisms through genetic characterization of two S. marcescens strains, CBS11 and CBS12, isolated from PCs by Canadian Blood Services. Genomic analyses of the two strains indicated that CBS11 has one chromosome and one plasmid (pAM01), whereas CBS12 has no plasmids. Phylogenetic analyses show that CBS11 and CBS12 are non-clonal strains, with CBS11 clustering closely with clinical strain CAV1492 and less so with environmental strain PWN146, and CBS12 clustering with a clinical strain AR_0027. Interestingly, pAM01 was most closely related to PWN146p1, a plasmid found in S. marcescens PWN146 strain associated with pinewood nematode Bursaphelenchus xylophilus. Lastly, the genomic diversity of CBS11 and CBS12 was not reflected in the antibiotic resistance profiles as they were remarkably similar to one another, but was reflected in the virulence phenotypes assessed in the Caenorhabditis elegans nematode infection model, with CBS11 being more virulent then CBS12. Taken together, we suggest that S. marcescens environmental isolates that feature evolutionary diverse genomics are better equipped to adapt and thrive in varied environments, such as that of PCs, and therefore is as much of a concern as multi-drug resistance for human infection potential

    Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510

    Get PDF
    We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3 311 395 bp) and six plasmids, designated as pAB510a (1 455 109 bp), pAB510b (723 779 bp), pAB510c (681 723 bp), pAB510d (628 837 bp), pAB510e (537 299 bp), and pAB510f (261 596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N2 fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C4-dicarboxylate during its symbiotic relationship with the host plant

    Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires' disease. Despite the abundance of dozens of <it>Legionella </it>species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely <it>L. pneumophila </it>Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1) and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis.</p> <p>Results</p> <p>We show that <it>L. pneumophila </it>Sg1 has a highly conserved and syntenic core genome that comprises the many eukaryotic like proteins and a conserved repertoire of over 200 Dot/Icm type IV secreted substrates. However, recombination events and horizontal gene transfer are frequent. In particular the analyses of the distribution of nucleotide polymorphisms suggests that large chromosomal fragments of over 200 kbs are exchanged between <it>L. pneumophila </it>strains and contribute to the genome dynamics in the natural population. The many secretion systems present might be implicated in exchange of these fragments by conjugal transfer. Plasmids also play a role in genome diversification and are exchanged among strains and circulate between different <it>Legionella </it>species.</p> <p>Conclusion</p> <p>Horizontal gene transfer among bacteria and from eukaryotes to <it>L. pneumophila </it>as well as recombination between strains allows different clones to evolve into predominant disease clones and others to replace them subsequently within relatively short periods of time.</p

    Bacterial Cyclic Diguanylate Signaling Networks Sense Temperature

    Get PDF
    Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria

    Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection

    Get PDF
    Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors

    Buigstijfheid in dwarsrichting van brugdekken bestaande uit afzonderlijke kokerprofielen met doorgaande dekplaat

    No full text

    Conserved function and regulation of chromosomal replication origins in a -proteobacteria : Caulobacter crescentus and Rickettsia prowazekii

    No full text
    The aquatic Gram-negative organism, Caulobacter crescentus, is a member of the alpha (alpha) subclass of the proteobacteria. C. crescentus possesses an unique cell cycle with a complex developmental program in that the bacterium asymmetrically divides to produce a replication competent stalked cell and replication incompetent swarmer cell. Previously, a chromosomal fragment was shown to support autonomous plasmid replication. In addition, sequence analysis of this autonomous replicating sequence (ARS) 500 by fragment, termed Cori, exhibited some shared features characteristic of a typical replication origin. However, as not all identified ARS elements are chromosomal replication origins, it was therefore shown by two-dimensional (2-D) DNA agarose gel electrophoresis analysis that chromosomal replication is bi-directional and originates within the Cori region (Chapter 2). Tracing of the leading strand path of nascent DNA within the Cori region not only supported the 2-D gel analysis results, but also indicated that replication initiates from within Cori (Chapter 3). Thus, it is confirmed that Cori is the chromosomal replication origin in C. crescentus and that replication proceeds bi-directionally. Nascent replicated DNA is methylated by the methyltransferase CcrM, but transcription of ccrM is indirectly dependent on synthesis of glycerol-3-phosphate, a precursor for cell membrane phospholipid synthesis (Chapter 6). A feature unique to C. crescentus is the global response regulator CtrA that controls key events within the cell cycle such as chromosomal replication. CtrA represses replication in the swarmer cell by binding to five specific sites on Cori. In order to allow replication to initiate, CtrA is removed from the stalked cell by proteolytic degradation. Another interesting feature is that Cori resides within an unusual gene cluster. It has also shown that this unusual gene cluster is not unique to C. crescentus as the alpha-proteobacterium intracellular pa

    Uncertainties in Redesigning an Existing Quay Wall

    No full text
    A feasibility study was carried out on the redesigning of an existing quay wall of a core harbor in the Netherlands, which was more than 45 years old. The geotechnical behavior of the existing quay wall, especially because of its age, as a response to the maximum load change is undoubtedly the uncertain parameter here. The design and redesign aspects have been considered: the evaluation of the current situation, the remaining lifetime of the structure and other aspects like corrosion and fatigue of the construction materials and the change in design standards between the past and the future situations. No monitoring and measurements were available. Inspection on steel structural elements showed some corrosion, to which extend was unknown. The history of load usage of the quay wall was not registered. After a preliminary redesign, it is clear that some uncertainties would remain. It was concluded that the lack of information in the current situation constitutes the main obstacle to a straightforward redesign and the use of Finite Element Method modelling reveals a failure mechanism, which was not encountered earlier. Because of the technical risks, a redesign of such existing and complex quay wall would necessitate an extensive design procedure to increase reliability
    • 

    corecore