153 research outputs found
Variability in a dominant block to SIV early reverse transcription in rhesus monkey cells predicts in vivo viral replication and time to death
While it has long been appreciated that there is considerable variability in host containment of HIV/SIV replication, the determinants of that variability are not fully understood. Previous studies demonstrated that the degree of permissivity of a macaque's peripheral blood mononuclear cells (PBMC) for infection with simian immunodeficiency virus (SIV) in vitro predicted that animal's peak plasma virus RNA levels following SIV infection in vivo. The present study was conducted to define the mechanisms underlying the variable intrinsic susceptibility of rhesus monkey PBMC to SIVsmE660 infection. In a cohort of 15 unrelated Indian-origin rhesus monkeys, infectability of PBMC of individual animals with SIVsmE660, as defined by tissue culture infectious dose (TCID50), varied by more than 3 logs and was a stable phenotype over time. Susceptibility of a monkey's PBMC to wild type SIVsmE660 infection correlated with the susceptibility of that monkey's PBMC to infection with VSV-G pseudotyped SIVsm543-GFP. Moreover, the permissivity of an individual monkey's PBMC for infection with this construct correlated with the permissivity of a B-lymphoblastoid cell line (B-LCL) generated from PBMC of the same animal. We found that the degree of intrinsic resistance of monkey B-LCL correlated with the copy number of early reverse transcription (ERT) SIV DNA. The resistance of monkey B-LCL to SIVsmE660 replication could be abrogated by preincubation of cells with the SIV virus-like particles (VLPs) and SIV resistance phenotype could be transferred to a SIV susceptible B-LCL through cell fusion. Finally, we observed a positive correlation between susceptibility of monkey B-LCL to SIV infection with a VSV-G pseudotyped SIV-GFP construct in vitro and both the peak plasma virus RNA levels in vivo and time to death following wild type SIV infection. These findings suggest that a dominant early RT restricting factor that can be saturated by SIV capsid may contribute to the variable resistance to SIV infection in rhesus monkey B-LCL and that this differential intrinsic susceptibility contributes to the clinical outcome of an SIV infection
Individual characteristics and student's engagement in scientific research : a cross-sectional study
Background:
In light of the increasing recognition of the importance of physician scientists, and given the association between undergraduate research experiences with future scientific activity, it is important to identify and understand variables related to undergraduate studentβs decision to engage in scientific research activities. The present study assessed the influence of individual characteristics, including personality traits and socio-demographic characteristics, on voluntary engagement in scientific research of undergraduate medical students.
Methods:
For this study, all undergraduate students and alumni of the School of Health Sciences in Minho, Portugal were invited to participate in a survey about voluntary engagement in scientific research activities. Data were available on socio-demographic, personality and university admission variables, as part of an ongoing longitudinal study. A regression model was used to compare (1) engaged with (2) not engaged students. A classification and regression tree model was used to compare students engaged in (3) elective curricular research (4) and extra-curricular research.
Results:
A total of 466 students (88%) answered the survey. A complete set of data was available for 435 students (83%).Higher scores in admission grade point average and the personality dimensions of βopenness to experienceβ and βconscientiousnessβ increased chances of engagement. Higher βextraversionβ scores had the opposite effect. Male undergraduate students were two times more likely than females to engage in curricular elective scientific research and were also more likely to engage in extra-curricular research activities.
Conclusions:
This study demonstrated that studentβs grade point average and individual characteristics, like gender, openness and consciousness have a unique and statistically significant contribution to studentβs involvement in undergraduate scientific research activities.Fundação para a CiΓͺncia e a Tecnologia (FCT) - PTDC/ESC/65116/200
Anticoagulation for non-valvular atrial aibrillation β towards a new beginning with ximelagatran
OBJECTIVES: Ximelagatran is a novel oral direct thrombin inhibitor. It has favorable pharmacodynamic properties, with a broad therapeutic range without the need for anticoagulation monitoring. We aimed to discover whether ximelagatran offers a genuine future replacement to warfarin for patients in persistent atrial fibrillation (AF). MATERIALS AND METHODS: We provide an evidence-based review of the relative merits and disadvantages of warfarin and aspirin. We subsequently present an overview of the evidence for the utility of ximelagatran in the treatment of AF. RESULTS: Adjusted dose warfarin is recommended over aspirin for patients in AF at high risk of future stroke. Some of this benefit is partially offset by the higher bleeding risks associated with warfarin therapy. The SPORTIF III and V studies have shown that ximelagatran is not inferior to warfarin in the prevention of all strokes in patients with AF (both persistent and paroxysmal). This benefit was partially offset by the finding of a significant elevation of liver transaminases (>3 Γ normal) in 6% of patients. CONCLUSIONS: Current data would suggest that ximelagatran might represent a future alternative to warfarin. The lack of need for anticoagulant monitoring has been partially offset by a need for regular monitoring of liver function. Further data from randomized clinical trials is clearly needed
Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype
Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM. Methods: To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility. Results: Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction. Conclusions: Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD
Computational Prediction of Host-Parasite Protein Interactions between P. falciparum and H. sapiens
To obtain candidates of interactions between proteins of the malaria parasite Plasmodium falciparum and the human host, homologous and conserved interactions were inferred from various sources of interaction data. Such candidate interactions were assessed by applying a machine learning approach and further filtered according to expression and molecular characteristics, enabling involved proteins to indeed interact. The analysis of predicted interactions indicated that parasite proteins predominantly target central proteins to take control of a human host cell. Furthermore, parasite proteins utilized their protein repertoire in a combinatorial manner, providing a broad connection to host cellular processes. In particular, several prominent pathways of signaling and regulation proteins were predicted to interact with parasite chaperones. Such a result suggests an important role of remodeling proteins in the interaction interface between the human host and the parasite. Identification of such molecular strategies that allow the parasite to take control of the host has the potential to deepen our understanding of the parasite specific remodeling processes of the host cell and illuminate new avenues of disease intervention
Discovery of an Auto-Regulation Mechanism for the Maltose ABC Transporter MalFGK2
The maltose transporter MalFGK2, together with the substrate-binding protein MalE, is one of the best-characterized ABC transporters. In the conventional model, MalE captures maltose in the periplasm and delivers the sugar to the transporter. Here, using nanodiscs and proteoliposomes, we instead find that MalE is bound with high-affinity to MalFGK2 to facilitate the acquisition of the sugar. When the maltose concentration exceeds the transport capacity, MalE captures maltose and dissociates from the transporter. This mechanism explains why the transport rate is high when MalE has low affinity for maltose, and low when MalE has high affinity for maltose. Transporter-bound MalE facilitates the acquisition of the sugar at low concentrations, but also captures and dissociates from the transporter past a threshold maltose concentration. In vivo, this maltose-forced dissociation limits the rate of transport. Given the conservation of the substrate-binding proteins, this mode of allosteric regulation may be universal to ABC importers
Identification of Mammalian Protein Quality Control Factors by High-Throughput Cellular Imaging
Protein Quality Control (PQC) pathways are essential to maintain the equilibrium between protein folding and the clearance of misfolded proteins. In order to discover novel human PQC factors, we developed a high-content, high-throughput cell-based assay to assess PQC activity. The assay is based on a fluorescently tagged, temperature sensitive PQC substrate and measures its degradation relative to a temperature insensitive internal control. In a targeted screen of 1591 siRNA genes involved in the Ubiquitin-Proteasome System (UPS) we identified 25 of the 33 genes encoding for 26S proteasome subunits and discovered several novel PQC factors. An unbiased genome-wide siRNA screen revealed the protein translation machinery, and in particular the EIF3 translation initiation complex, as a novel key modulator of misfolded protein stability. These results represent a comprehensive unbiased survey of human PQC components and establish an experimental tool for the discovery of genes that are required for the degradation of misfolded proteins under conditions of proteotoxic stress
Rule-Guided Executive Control of Response Inhibition: Functional Topography of the Inferior Frontal Cortex
The human inferior frontal cortex (IFC) is a large heterogeneous structure with distinct cytoarchitectonic subdivisions and fiber connections. It has been found involved in a wide range of executive control processes from target detection, rule retrieval to response control. Since these processes are often being studied separately, the functional organization of executive control processes within the IFC remains unclear.We conducted an fMRI study to examine the activities of the subdivisions of IFC during the presentation of a task cue (rule retrieval) and during the performance of a stop-signal task (requiring response generation and inhibition) in comparison to a not-stop task (requiring response generation but not inhibition). We utilized a mixed event-related and block design to separate brain activity in correspondence to transient control processes from rule-related and sustained control processes. We found differentiation in control processes within the IFC. Our findings reveal that the bilateral ventral-posterior IFC/anterior insula are more active on both successful and unsuccessful stop trials relative to not-stop trials, suggesting their potential role in the early stage of stopping such as triggering the stop process. Direct countermanding seems to be outside of the IFC. In contrast, the dorsal-posterior IFC/inferior frontal junction (IFJ) showed transient activity in correspondence to the infrequent presentation of the stop signal in both tasks and the left anterior IFC showed differential activity in response to the task cues. The IFC subdivisions also exhibited similar but distinct patterns of functional connectivity during response control.Our findings suggest that executive control processes are distributed across the IFC and that the different subdivisions of IFC may support different control operations through parallel cortico-cortical and cortico-striatal circuits
- β¦