56 research outputs found

    Primary aragonite and high-Mg calcite in the late Cambrian (Furongian) : Potential evidence from marine carbonates in Oman

    Get PDF
    Acknowledgements Fieldwork and sampling was funded by Petroleum Development Oman during S. Al Marjibis's Ph.D. Their help is gratefully acknowledged. We also thank colleagues at the University of Aberdeen, Julie Dougans (SUERC) for assisting with stable isotope analysis and Dr. Richard Hinton (EIMF) for assistance with ion microprobe analysis. Profs. Kiessling, Tucker, Bosence, Coleman, Dr. Dickson and an anonymous reviewer are thanked for their helpful and encouraging comments.Peer reviewedPostprin

    What do we really know about early diagenesis of non-marine carbonates?

    Get PDF
    Non-marine carbonate rocks including cave, spring, stream, calcrete and lacustrine- palustrine sediments, are susceptible to early diagenetic processes. These can profoundly alter the carbonate fabric and affect paleoclimatic proxies. This review integrates recent insights into diagenesis of non-marine carbonates and in particular the variety of early diagenetic processes, and presents a conceptual framework to address them. With ability to study at smaller and smaller scales, down to nanometers, one can now observe diagenesis taking place the moment initial precipitates have formed, and continuing thereafter. Diagenesis may affect whole rocks, but it typically starts in nano- and micro-environments. The potential for diagenetic alteration depends on the reactivity of the initial precipitate, commonly being metastable phases like vaterite, Ca-oxalates, hydrous Mg‐carbonates and aragonite with regard to the ambient fluid. Furthermore, organic compounds commonly play a crucial role in hosting these early transformations. Processes like neomorphism (inversion and recrystallization), cementation and replacement generally result in an overall coarsening of the fabric and homogenization of the wide range of complex, primary microtextures. If early diagenetic modifications are completed in a short time span compared to the (annual to millennial) time scale of interest, then recorded paleoenvironmental signals and trends could still acceptably reflect original, depositional conditions. However, even compact, non-marine carbonate deposits may behave locally and temporarily as open systems to crystal- fluid exchange and overprinting of one or more geochemical proxies is not unexpected. Looking to the future, relatively few studies have examined the behaviour of promising geochemical records, such as clumped isotope thermometry and (non- conventional) stable isotopes, in well-constrained diagenetic settings. Ongoing and future in-vitro and in-situ experimental approaches will help to investigate and detangle sequences of intermediate, diagenetic products, processes and controls, and to quantify rates of early diagenesis, bridging a gap between nanoscale, molecular lab studies and the fossil field rock record of non-marine carbonates

    Carbonate deposition in the Palaeoproterozoic Onega basin from Fennoscandia : a spotlight on the transition from the Lomagundi-Jatuli to Shunga events

    Get PDF
    Date of Acceptance: 08/05/2015 Date of online publication: 16/05/2015 Acknowledgements Elemental and isotopic data, thin and polished sections used in this contribution were obtained through two large umbrella-projects with grants provided by the Norwegian Research Council grant 191530/V30 to VAM and NERC grant NE/G00398X/1 to AEF. We thank A. Črne, the editor A. Strasser as well as one anonymous reviewer and D. Papineau for providing their valuable criticism and suggestions.Peer reviewedPostprin

    Petrological evidence in support of the death mask model for Ediacaran soft-bodied preservation in South Australia

    Get PDF
    Microbially mediated early diagenetic pyrite formation in the immediate vicinity of organic material has been the favoured mechanism by which to explain widespread preservation of soft-bodied organisms in late Ediacaran sedimentary successions, but an alternative rapid silicification model has been proposed for macrofossil preservation in sandstones of the Ediacara Member in South Australia. We here provide petrological evidence from Nilpena National Heritage Site and Ediacara Conservation Park to demonstrate the presence of grain-coating iron oxides, framboidal hematite, and clay minerals along Ediacara Member sandstone bedding planes, including fossil-bearing bed soles. SEM and petrographic data reveal that framboids and grain coatings, which we interpret as oxidized pyrite, formed before the precipitation of silica cements. In conjunction with geochemical and taphonomic considerations, our data suggest that anactualistically high concentrations of silica need not be invoked to explain Ediacara Member fossil preservation: we conclude that the pyritic ‘death mask’ model remains compelling.AGL is funded by the Natural Environment Research Council [grant number NE/L011409/2]. SM acknowledges support from the European Union’s Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie grant agreement 747877 ... JJM recognises support from Mitacs ..

    Exploring electron backscatter diffraction analysis as a tool for understanding stromatolite : Quantitative description of Cretaceous lacustrine stromatolite reveals formative processes and high-resolution climatic cycles

    Get PDF
    The authors would like to express their gratitude to the Associate Editor Mike Rogerson and two anonymous reviewers for their valuable insights and constructive feedback, which improved the quality of this manuscript. They also thank J. Dabkowski for providing Fig. 7F, R. Riding for discussing stromatolite and S. Choi for discussing EBSD.Peer reviewe

    Did the Benue Trough connect the Gulf of Guinea with the Tethys Ocean in the Cenomanian? : New evidence from the Palynostratigraphy of the Yola Sub-basin

    Get PDF
    Acknowledgements: M.B. Usman gratefully acknowledges the Petroleum Technology Development Fund (PTDF) for the award of a scholarship to study at the University of Aberdeen. The anonymous reviewers and the editor Eduardo Koutsoukos are thanked for their suggestions and corrections of the manuscript. We also acknowledge Roger David Burgess and Kelly Rebecca Snow for their technical assistance at the palynological laboratory of the University of Aberdeen.Peer reviewedPostprin

    A depositional model for spherulitic carbonates associated with alkaline, volcanic lakes

    Get PDF
    The South Atlantic Aptian ‘Pre-salt’ reservoirs are formed by a combination of spherulitic carbonates and Mg-rich clays accumulated in volcanic alkaline lake settings with exotic chemistries. So far, outcrop analogues characterised by metre-thick successions deposited in lacustrine scenarios are elusive so disentangling the genesis of spherulitic carbonates represents a major scientific challenge with business impact. In particular the controls on spatial distribution and the environment of spherulitic facies formation remain poorly constrained, little studied, and hotly debated. To shed light on this conundrum, a spherulitic carbonate-rich, alkaline volcanic lacustrine succession has been analysed at outcrop scale: the Carboniferous East Kirkton Limestone (Scotland). Despite clays being very scarce and limited to layers of amorphous Mg-Si minerals, a diverse array of spherulitic calcitic components were formed, including coated grains, crusts, and build-ups. This setting enables the mechanisms of spherulitic calcite development and the patterns of sediment accumulation to be explored in a geobiological and hydrochemical scenario similar to the ‘Pre-Salt’ subsurface occurrences but divorced from clay influence. The integration of logs, borehole data, outcrop photomosaics and petrographic observations collectively allowed the reconstruction of a depositional model for the East Kirkton lacustrine succession. In this model, calcite spherule nucleation took place at the sediment-water interface in the littoral zone, driven by the co-occurrence of 1) high alkalinity, 2) Ca-Mg rich hydrochemistry, and 3) microbial-derived colloidal exopolymeric substances. These environmental conditions permitted the coeval development of spherulitic cementstone build-ups and spherulitic grainstone-packstone within the wave-agitated zone, and the accumulation of floatstones and laminites of spherulitic grains in deeper lake regions by means of downslope reworking. This model is consistent with the previously documented microbial bloom occurrences and highlights the need to better understand the complex ‘microbe-solution’ interactions before any reliable facies model is envisaged

    Increasing forest loss worldwide from invasive pests requires new trade regulations

    Get PDF
    Loss of forests due to non-native invasive pests (including insects, nematodes, and pathogens) is a global phenomenon with profound population, community, ecosystem, and economic impacts. We review the magnitude of pest-associated forest loss worldwide and discuss the major ecological and evolutionary causes and consequences of these invasions. After compiling and analyzing a dataset of pest invasions from 21 countries, we show that the number of forest pest invasions recorded for a given country has a significant positive relationship with trade (as indicated by gross domestic product) and is not associated with the amount of forested land within that country. We recommend revisions to existing international protocols for preventing pest entry and proliferation, including prohibiting shipments of non-essential plants and plant products unless quarantined. Because invasions often originate from taxa that are scientifically described only after their introduction, current phytosanitary regulations – which target specific, already named organisms – are ineffective

    The Palaeoproterozoic global carbon cycle : insights from the Loch Maree Group, NW Scotland

    Get PDF
    Fieldwork was supported by the Edinburgh Geological Society Clough & Mykura Fund, the Carnegie Undergraduate Scholarship and a stipend provided by the Irvine Bequest through the University of St Andrews to G.B.K. Laboratory work, and isotope and geochronology analyses were financed by NERC grant NE/G00398X/1 to A.R.P., A.E.F., D.J.Condon and A.P.M. Thanks go to T. Donnelly, J. Dougans, A. Calder, D. Herd, B. Pooley and A. Mackie for laboratory assistance.Peer reviewedPostprin
    corecore