251 research outputs found
An isoperimetric problem for leaky loops and related mean-chord inequalities
We consider a class of Hamiltonians in with attractive
interaction supported by piecewise smooth loops of a fixed
length , formally given by with .
It is shown that the ground state of this operator is locally maximized by a
circular . We also conjecture that this property holds globally and
show that the problem is related to an interesting family of geometric
inequalities concerning mean values of chords of .Comment: LaTeX, 16 page
Distribution theory for Schr\"odinger's integral equation
Much of the literature on point interactions in quantum mechanics has focused
on the differential form of Schr\"odinger's equation. This paper, in contrast,
investigates the integral form of Schr\"odinger's equation. While both forms
are known to be equivalent for smooth potentials, this is not true for
distributional potentials. Here, we assume that the potential is given by a
distribution defined on the space of discontinuous test functions.
First, by using Schr\"odinger's integral equation, we confirm a seminal
result by Kurasov, which was originally obtained in the context of
Schr\"odinger's differential equation. This hints at a possible deeper
connection between both forms of the equation. We also sketch a generalisation
of Kurasov's result to hypersurfaces.
Second, we derive a new closed-form solution to Schr\"odinger's integral
equation with a delta prime potential. This potential has attracted
considerable attention, including some controversy. Interestingly, the derived
propagator satisfies boundary conditions that were previously derived using
Schr\"odinger's differential equation.
Third, we derive boundary conditions for `super-singular' potentials given by
higher-order derivatives of the delta potential. These boundary conditions
cannot be incorporated into the normal framework of self-adjoint extensions. We
show that the boundary conditions depend on the energy of the solution, and
that probability is conserved.
This paper thereby confirms several seminal results and derives some new
ones. In sum, it shows that Schr\"odinger's integral equation is viable tool
for studying singular interactions in quantum mechanics.Comment: 23 page
Scattering by local deformations of a straight leaky wire
We consider a model of a leaky quantum wire with the Hamiltonian in , where is a compact
deformation of a straight line. The existence of wave operators is proven and
the S-matrix is found for the negative part of the spectrum. Moreover, we
conjecture that the scattering at negative energies becomes asymptotically
purely one-dimensional, being determined by the local geometry in the leading
order, if is a smooth curve and .Comment: Latex2e, 15 page
The absolutely continuous spectrum of one-dimensional Schr"odinger operators
This paper deals with general structural properties of one-dimensional
Schr"odinger operators with some absolutely continuous spectrum. The basic
result says that the omega limit points of the potential under the shift map
are reflectionless on the support of the absolutely continuous part of the
spectral measure. This implies an Oracle Theorem for such potentials and
Denisov-Rakhmanov type theorems.
In the discrete case, for Jacobi operators, these issues were discussed in my
recent paper [19]. The treatment of the continuous case in the present paper
depends on the same basic ideas.Comment: references added; a few very minor change
Leaky quantum graphs: approximations by point interaction Hamiltonians
We prove an approximation result showing how operators of the type in , where is a graph,
can be modeled in the strong resolvent sense by point-interaction Hamiltonians
with an appropriate arrangement of the potentials. The result is
illustrated on finding the spectral properties in cases when is a ring
or a star. Furthermore, we use this method to indicate that scattering on an
infinite curve which is locally close to a loop shape or has multiple
bends may exhibit resonances due to quantum tunneling or repeated reflections.Comment: LaTeX 2e, 31 pages with 18 postscript figure
Boundary Conditions for Singular Perturbations of Self-Adjoint Operators
Let A:D(A)\subseteq\H\to\H be an injective self-adjoint operator and let
\tau:D(A)\to\X, X a Banach space, be a surjective linear map such that
\|\tau\phi\|_\X\le c \|A\phi\|_\H. Supposing that \text{\rm Range}
(\tau')\cap\H' =\{0\}, we define a family of self-adjoint
operators which are extensions of the symmetric operator .
Any in the operator domain is characterized by a sort
of boundary conditions on its univocally defined regular component \phireg,
which belongs to the completion of D(A) w.r.t. the norm \|A\phi\|_\H. These
boundary conditions are written in terms of the map , playing the role of
a trace (restriction) operator, as \tau\phireg=\Theta Q_\phi, the extension
parameter being a self-adjoint operator from X' to X. The self-adjoint
extension is then simply defined by A^\tau_\Theta\phi:=A \phireg. The case in
which is a convolution operator on LD, T a distribution with
compact support, is studied in detail.Comment: Revised version. To appear in Operator Theory: Advances and
Applications, vol. 13
Development of Magnetic Inspection Techniques for Evaluation of Fatigue Damage and Stress in Low Alloy Steels
It is known that the magnetic properties of ferromagnetic materials change under fatigue and applied loads (1,2,3). These changes in the magnetic properties could be used as indicators of the stress state of the material, or possibly for predicting the remaining fatigue life. Previous reports have shown successful implementation of this magnetic measurement technique for NDE of steel samples in a laboratory enviroment. However, for this technique to be practical, a field-usable instrument must be developed. This paper will describe measurements using one such instrument, the Magnescope. It will also discuss the techniques used to evaluate the effects of applied loads, both tensile and compressive, and low cycle fatigue on a variety of materials
Nondestructive Methods for the Determination of Mechanical Properties of Materials
The nondestructive determination of mechanical properties of materials is desirable because of the rising cost of both materials and labor as well as safety concerns. In most alloys, changes in thermal and/or mechanical history results in microstructural changes and consequently different mechanical properties. Thermal or mechanical cycles may result from processing or occur in service. Therefore nondestructive detection of microstructure and mechanical properties would prove useful in all phases of metallurgical use. This paper reports on efforts to determine selected mechanical properties of structural materials by nondestructive means such as electrical, acoustic and magnetic techniques as well as hardness. Various thermal and mechanical conditions have been imposed on aluminum, titanium and ferrous alloys to arrive at a wide range of mechanical properties. It is concluded that the intimate knowledge of the microstructure and environmental effects are essential to select the nondestructive method that is most sensitive to property changes
Bound states in point-interaction star-graphs
We discuss the discrete spectrum of the Hamiltonian describing a
two-dimensional quantum particle interacting with an infinite family of point
interactions. We suppose that the latter are arranged into a star-shaped graph
with N arms and a fixed spacing between the interaction sites. We prove that
the essential spectrum of this system is the same as that of the infinite
straight "polymer", but in addition there are isolated eigenvalues unless N=2
and the graph is a straight line. We also show that the system has many
strongly bound states if at least one of the angles between the star arms is
small enough. Examples of eigenfunctions and eigenvalues are computed
numerically.Comment: 17 pages, LaTeX 2e with 9 eps figure
- …