623 research outputs found

    Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, Part 2: Insights from meteoric 10Be

    Get PDF
    Regolith-mantled hillslopes are ubiquitous features of most temperate landscapes, and their morphology reflects the climatically, biologically, and tectonically mediated interplay between regolith production and downslope transport. Despite intensive research, few studies have quantified both of these mass fluxes in the same field site. Here we present an analysis of 87 meteoric 10Be measurements from regolith and bedrock within the Susquehanna Shale Hills Critical Zone Observatory (SSHO), in central Pennsylvania. Meteoric 10Be concentrations in bulk regolith samples (n=73) decrease with regolith depth. Comparison of hillslope meteoric 10Be inventories with analyses of rock chip samples (n=14) from a 24 m bedrock core confirms that >80% of the total inventory is retained in the regolith. The systematic downslope increase of meteoric 10Be inventories observed at SSHO is consistent with 10Be accumulation in slowly creeping regolith (∼ 0.2 cm yr-1). Regolith flux inferred from meteoric 10Be varies linearly with topographic gradient (determined from high-resolution light detection and ranging-based topography) along the upper portions of hillslopes at SSHO. However, regolith flux appears to depend on the product of gradient and regolith depth where regolith is thick, near the base of hillslopes. Meteoric 10Be inventories at the north and south ridgetops indicate minimum regolith residence times of 10.5 ± 3.7 and 9.1 ± 2.9 ky, respectively, similar to residence times inferred from U-series isotopes in Ma et al. (2013). The combination of our results with U-series-derived regolith production rates implies that regolith production and erosion rates are similar to within a factor of two on SSHO hillcrests. ©2013. American Geophysical Union. All Rights Reserved

    Natural and anthropogenic processes contributing to metal enrichment in surface soils of central Pennsylvania

    Get PDF
    Metals in soils may positively or negatively affect plants as well as soil micro-organisms and mesofauna, depending on their abundance and bioavailability. Atmospheric deposition and biological uplift commonly result in metal enrichment in surface soils, but the relative importance of these processes is not always resolved. Here, we used an integrated approach to study the cycling of phosphorus and a suite of metals from the soil to the canopy (and back) in a temperate watershed. The behavior of elements in these surface soils fell into three categories. First, Al, Fe, V, Co, and Cr showed little to no enrichment in the top soil layers, and their concentrations were determined primarily by soil production fluxes with little influence of either atmospheric inputs or biological activity. Second, P, Cu, Zn and Cd were moderately enriched in surface soils due to a combination of atmospheric deposition and biological uplift. Among the metals we studied, Cu, Zn and Cd concentrations in surface soils were the most sensitive to changes in atmospheric deposition fluxes. Finally, Mo and Mn showed strong enrichment in the top soil layer that could not be explained strictly by either current atmospheric deposition or biological recycling processes, but may reflect both their unique chemistry and remnants of past anthropogenic fluxes. Mn has a long residence time in the soil partly due to intense biological uplift that retains Mn in the top soil layer. Mo, in spite of the high solubility of molybdate, remains in the soil because of strong binding to natural organic matter. This study demonstrates the need to consider simultaneously the vegetation and the soils to understand elemental distribution within soil profiles as well as cycling within watersheds

    Biotic controls on solute distribution and transport in headwater catchments

    Get PDF
    Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of headwater catchments underlain by shale in Pennsylvania, USA (Shale Hills) 5 and Wales, UK (Plynlimon), dissimilar concentration-discharge behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation. Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heteroge- 10 neous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic “bioactive” behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters 15 across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where soil organic matter (SOM) is dom- 20 inantly in lowlands (e.g., Shale Hills), bioactive elements are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), bioactive elements are released later during rainfall events. The distribution of vegetation and SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments

    Mobile air monitoring data-processing strategies and effects on spatial air pollution trends

    Get PDF
    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data analysis with complex second-by-second multipollutant data varying as a function of time and location. Data reduction and filtering techniques are often applied to deduce trends, such as pollutant spatial gradients downwind of a highway. However, rarely do mobile monitoring studies report the sensitivity of their results to the chosen data-processing approaches. The study being reported here utilized 40 h (> 140 000 observations) of mobile monitoring data collected on a roadway network in central North Carolina to explore common data-processing strategies including local emission plume detection, background estimation, and averaging techniques for spatial trend analyses. One-second time resolution measurements of ultrafine particles (UFPs), black carbon (BC), particulate matter (PM), carbon monoxide (CO), and nitrogen dioxide (NO<sub>2</sub>) were collected on 12 unique driving routes that were each sampled repeatedly. The route with the highest number of repetitions was used to compare local exhaust plume detection and averaging methods. Analyses demonstrate that the multiple local exhaust plume detection strategies reported produce generally similar results and that utilizing a median of measurements taken within a specified route segment (as opposed to a mean) may be sufficient to avoid bias in near-source spatial trends. A time-series-based method of estimating background concentrations was shown to produce similar but slightly lower estimates than a location-based method. For the complete data set the estimated contributions of the background to the mean pollutant concentrations were as follows: BC (15%), UFPs (26%), CO (41%), PM<sub>2.5-10</sub> (45%), NO<sub>2</sub> (57%), PM<sub>10</sub> (60%), PM<sub>2.5</sub> (68%). Lastly, while temporal smoothing (e.g., 5 s averages) results in weak pair-wise correlation and the blurring of spatial trends, spatial averaging (e.g., 10 m) is demonstrated to increase correlation and refine spatial trends

    Booming sand dunes: field measurements

    Get PDF
    “Booming dunes” are large desert sand dunes that make a loud droning or humming noise during an avalanching of sand. The phenomenon has been observed for censturies, yet it remains largely unexplained. This note demonstrates that the booming frequency does not scale with the size of the particle or with the shearing speed of the avalanching sand. Instead, the dune may act as a waveguide with a fundamental frequency that depends on the sound speed within the dune and the depth of the loose dry sand layer

    Regolith production and transport in the Susquehanna Shale Hills Critical Zone Observatory, Part 1: Insights from U-series isotopes

    Get PDF
    To investigate the timescales of regolith formation on hillslopes with contrasting topographic aspect, we measured U-series isotopes in regolith profiles from two hillslopes (north facing versus south facing) within the east-west trending Shale Hills catchment in Pennsylvania. This catchment is developed entirely on the Fe-rich, Silurian Rose Hill gray shale. Hillslopes exhibit a topographic asymmetry: The north-facing hillslope has an average slope gradient of ~20°, slightly steeper than the south-facing hillslope (~15°). The regolith samples display significant U-series disequilibrium resulting from shale weathering. Based on the U-series data, the rates of regolith production on the two ridgetops are indistinguishable (40 ± 22 versus 45 ± 12 m/Ma). However, when downslope positions are compared, the regolith profiles on the south-facing hillslope are characterized by faster regolith production rates (50 ± 15 to 52 ± 15 m/Ma) and shorter durations of chemical weathering (12 ± 3 to 16 ± 5 ka) than those on the north-facing hillslope (17 ± 14 to 18 ± 13 m/Ma and 39 ± 20 to 43 ± 20 ka). The south-facing hillslope is also characterized by faster chemical weathering rates inferred from major element chemistry, despite lower extents of chemical depletion. These results are consistent with the influence of aspect on regolith formation at Shale Hills; we hypothesize that aspect affects such variables as temperature, moisture content, and evapotranspiration in the regolith zone, causing faster chemical weathering and regolith formation rates on the south-facing side of the catchment. The difference in microclimate between these two hillslopes is inferred to have been especially significant during the periglacial period that occurred at Shale Hills at least ~15 ka before present. At that time, the erosion rates may also have been different from those observed today, perhaps denuding the south-facing hillslope of regolith but not quite stripping the north-facing hillslope. An analysis of hillslope evolution and response timescales with a linear mass transport model shows that the current landscape at Shale Hills is not in geomorphologic steady state (i.e., so-called dynamic equilibrium) but rather is likely still responding to the climate shift from the Holocene periglacial to the modern, temperate conditions

    Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films

    Get PDF
    Correlated experimental and simulation studies on the modulation of Surface Plasmon Polaritons (SPP) in Au/VO2 bilayers are presented. The modification of the SPP wave vector by the thermallyinduced insulator-to-metal phase transition (IMT) in VO2 was investigated by measuring the optical reflectivity of the sample. Reflectivity changes are observed for VO2 when transitioning between the insulating and metallic states, enabling modulation of the SPP in the Au layer by the thermally induced IMT in the VO2 layer. Since the IMT can also be optically induced using ultrafast laser pulses, we postulate the viability of SPP ultrafast modulation for sensing or control. (C)2015 Optical Society of Americ

    Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, part 2: Insights from meteoric10Be

    Get PDF
    Regolith-mantled hillslopes are ubiquitous features of most temperate landscapes, and their morphology reflects the climatically, biologically, and tectonically mediated interplay between regolith production and downslope transport. Despite intensive research, few studies have quantified both of these mass fluxes in the same field site. Here we present an analysis of 87 meteoric 10Be measurements from regolith and bedrock within the Susquehanna Shale Hills Critical Zone Observatory (SSHO), in central Pennsylvania. Meteoric 10Be concentrations in bulk regolith samples (n=73) decrease with regolith depth. Comparison of hillslope meteoric 10Be inventories with analyses of rock chip samples (n=14) from a 24 m bedrock core confirms that &gt;80% of the total inventory is retained in the regolith. The systematic downslope increase of meteoric 10Be inventories observed at SSHO is consistent with 10Be accumulation in slowly creeping regolith (∼ 0.2 cm yr-1). Regolith flux inferred from meteoric 10Be varies linearly with topographic gradient (determined from high-resolution light detection and ranging-based topography) along the upper portions of hillslopes at SSHO. However, regolith flux appears to depend on the product of gradient and regolith depth where regolith is thick, near the base of hillslopes. Meteoric 10Be inventories at the north and south ridgetops indicate minimum regolith residence times of 10.5 ± 3.7 and 9.1 ± 2.9 ky, respectively, similar to residence times inferred from U-series isotopes in Ma et al. (2013). The combination of our results with U-series-derived regolith production rates implies that regolith production and erosion rates are similar to within a factor of two on SSHO hillcrests

    Cosmogenic ^(10)Be and ^(36)Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    Get PDF
    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ∼297 ± 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic ^(10)Be and ^(36)Cl geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/−20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on ^(36)Cl depth profiles is 63 ± 8 ka. Combining the offset measurement with the cosmogenic ^(10)Be date yields a geologic fault slip rate of 4.2 +1.9/−1.1 mm yr^(−1), whereas the ^(36)Cl data indicate 4.7 +0.9/−0.6 mm yr^(−1) of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ∼8.5 to 10 mm yr^(−1). This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant
    corecore