1,409 research outputs found
La concentration spatiale relative de la criminalité et son analyse : vers un renouvellement de la criminologie environnementale
This particular article describes and applies one type of analysis borrowed from regional economics and regional planning to look at macro to micro patterns in criminal activity. The technique is called Location Quotients and is used to analyse the relative mix of crimes across areas. Location Quotients are shown to have their strongest potential in microanalysis of crime patterns. As an initial test of the technique's relativistic analytic value. Location Quotients for motor vehicle theft were calculated for several levels within a Canadian cone of resolution that descends from the provincial level to the individual level in the municipality of Burnaby, British Columbia
Bees
Harrison\u27s truck bumps over something he didn\u27t see, and his eyes flint into the rearview to watch his father\u27s beehive come off the bed a couple of inches and slam down again onto the metal. The hive is a manmade box just barely too large for Harrison to carry by himself and painted white. Inside are slats made out of a tightly woven chicken wire and of course, bees and their honey. It\u27s not the honey that his father wants, though. It\u27s the bees and their stings, which are the best treatment that his father knows for his rheumatism
Power of Criminal Attractors: Modeling the Pull of Activity Nodes
The spatial distribution of crime has been a long-standing interest in the field of criminology. Research in this area has shown that activity nodes and travel paths are key components that help to define patterns of offending. Little research, however, has considered the influence of activity nodes on the spatial distribution of crimes in crime neutral areas - those where crimes are more haphazardly dispersed. Further, a review of the literature has revealed a lack of research in determining the relative strength of attraction that different types of activity nodes possess based on characteristics of criminal events in their immediate surrounds. In this paper we use offenders' home locations and the locations of their crimes to define directional and distance parameters. Using these parameters we apply mathematical structures to define rules by which different models may behave to investigate the influence of activity nodes on the spatial distribution of crimes in crime neutral areas. The findings suggest an increasing likelihood of crime as a function of geometric angle and distance from an offender's home location to the site of the criminal event. Implications of the results are discussed.Crime Attractor, Directionality of Crime, Mathematical Modeling, Computational Criminology
Deep Learning for Real Time Crime Forecasting
Accurate real time crime prediction is a fundamental issue for public safety,
but remains a challenging problem for the scientific community. Crime
occurrences depend on many complex factors. Compared to many predictable
events, crime is sparse. At different spatio-temporal scales, crime
distributions display dramatically different patterns. These distributions are
of very low regularity in both space and time. In this work, we adapt the
state-of-the-art deep learning spatio-temporal predictor, ST-ResNet [Zhang et
al, AAAI, 2017], to collectively predict crime distribution over the Los
Angeles area. Our models are two staged. First, we preprocess the raw crime
data. This includes regularization in both space and time to enhance
predictable signals. Second, we adapt hierarchical structures of residual
convolutional units to train multi-factor crime prediction models. Experiments
over a half year period in Los Angeles reveal highly accurate predictive power
of our models.Comment: 4 pages, 6 figures, NOLTA, 201
Latent Self-Exciting Point Process Model for Spatial-Temporal Networks
We propose a latent self-exciting point process model that describes
geographically distributed interactions between pairs of entities. In contrast
to most existing approaches that assume fully observable interactions, here we
consider a scenario where certain interaction events lack information about
participants. Instead, this information needs to be inferred from the available
observations. We develop an efficient approximate algorithm based on
variational expectation-maximization to infer unknown participants in an event
given the location and the time of the event. We validate the model on
synthetic as well as real-world data, and obtain very promising results on the
identity-inference task. We also use our model to predict the timing and
participants of future events, and demonstrate that it compares favorably with
baseline approaches.Comment: 20 pages, 6 figures (v3); 11 pages, 6 figures (v2); previous version
appeared in the 9th Bayesian Modeling Applications Workshop, UAI'1
Semi-Supervised First-Person Activity Recognition in Body-Worn Video
Body-worn cameras are now commonly used for logging daily life, sports, and
law enforcement activities, creating a large volume of archived footage. This
paper studies the problem of classifying frames of footage according to the
activity of the camera-wearer with an emphasis on application to real-world
police body-worn video. Real-world datasets pose a different set of challenges
from existing egocentric vision datasets: the amount of footage of different
activities is unbalanced, the data contains personally identifiable
information, and in practice it is difficult to provide substantial training
footage for a supervised approach. We address these challenges by extracting
features based exclusively on motion information then segmenting the video
footage using a semi-supervised classification algorithm. On publicly available
datasets, our method achieves results comparable to, if not better than,
supervised and/or deep learning methods using a fraction of the training data.
It also shows promising results on real-world police body-worn video
Early Identification of Violent Criminal Gang Members
Gang violence is a major problem in the United States accounting for a large
fraction of homicides and other violent crime. In this paper, we study the
problem of early identification of violent gang members. Our approach relies on
modified centrality measures that take into account additional data of the
individuals in the social network of co-arrestees which together with other
arrest metadata provide a rich set of features for a classification algorithm.
We show our approach obtains high precision and recall (0.89 and 0.78
respectively) in the case where the entire network is known and out-performs
current approaches used by law-enforcement to the problem in the case where the
network is discovered overtime by virtue of new arrests - mimicking real-world
law-enforcement operations. Operational issues are also discussed as we are
preparing to leverage this method in an operational environment.Comment: SIGKDD 201
Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction
There is often latent network structure in spatial and temporal data and the
tools of network analysis can yield fascinating insights into such data. In
this paper, we develop a nonparametric method for network reconstruction from
spatiotemporal data sets using multivariate Hawkes processes. In contrast to
prior work on network reconstruction with point-process models, which has often
focused on exclusively temporal information, our approach uses both temporal
and spatial information and does not assume a specific parametric form of
network dynamics. This leads to an effective way of recovering an underlying
network. We illustrate our approach using both synthetic networks and networks
constructed from real-world data sets (a location-based social media network, a
narrative of crime events, and violent gang crimes). Our results demonstrate
that, in comparison to using only temporal data, our spatiotemporal approach
yields improved network reconstruction, providing a basis for meaningful
subsequent analysis --- such as community structure and motif analysis --- of
the reconstructed networks
- …
