15 research outputs found

    Non-equilibrium electronic transport in a one-dimensional Mott insulator

    Get PDF
    We calculate the non-equilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to non-interacting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density matrix renormalization group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.Comment: 12 pages RevTex4, 12 eps figures, as published, minor revision

    Numerical method for non-linear steady-state transport in one-dimensional correlated conductors

    Full text link
    We present a method for investigating the steady-state transport properties of one-dimensional correlated quantum systems. Using a procedure based on our analysis of finite-size effects in a related classical model (LC line) we show that stationary currents can be obtained from transient currents in finite systems driven out of equilibrium. The non-equilibrium dynamics of correlated quantum systems is calculated using the time-evolving block decimation method. To demonstrate our method we determine the full I-V characteristic of the spinless fermion model with nearest-neighbour hopping t_H and interaction V_H using two different setups to generate currents (turning on/off a potential bias). Our numerical results agree with exact results for non-interacting fermions (V_H=0). For interacting fermions we find that in the linear regime eV << 4t_H the current I is independent from the setup and our numerical data agree with the predictions of the Luttinger liquid theory combined with the Bethe Ansatz solution. For larger potentials V the steady-state current depends on the current-generating setup and as V increases we find a negative differential conductance with one setup while the currents saturate at finite values in the other one. Both effects are due to finite renormalized bandwidths.Comment: published versio

    Embedding method for the scattering phase in strongly correlated quantum dots

    Full text link
    The embedding method for the calculation of the conductance through interacting systems connected to single channel leads is generalized to obtain the full complex transmission amplitude that completely characterizes the effective scattering matrix of the system at the Fermi energy. We calculate the transmission amplitude as a function of the gate potential for simple diamond-shaped lattice models of quantum dots with nearest neighbor interactions. In our simple models we do not generally observe an interaction dependent change in the number of zeroes or phase lapses that depend only on the symmetry properties of the underlying lattice. Strong correlations separate and reduce the widths of the resonant peaks while preserving the qualitative properites of the scattering phase.Comment: 11 pages, 3 figures. Proceedings of the Workshop on Advanced Many-Body and Statistical Methods in Mesoscopic Systems, Constanta, Romania, June 27th - July 2nd 2011. To appear in Journal of Physics: Conference Serie

    2PI nonequilibrium versus transport equations for an ultracold Bose gas

    Full text link
    The far-from-equilibrium dynamics of an ultracold, one-dimensional Bose gas is studied. The focus is set on the comparison between the solutions of fully dynamical evolution equations derived from the 2PI effective action and their corresponding kinetic approximation in the form of Boltzmann-type transport equations. It is shown that during the time evolution of the gas a kinetic description which includes non-Markovian memory effects in a gradient expansion becomes valid. The time scale at which this occurs is shown to exceed significantly the time scale at which the system's evolution enters a near-equilibrium drift period where a fluctuation dissipation relation is found to hold and which would seem to be predestined for the kinetic approximation.Comment: 24 pages, 7 figures. References adde
    corecore