42 research outputs found

    Celiac disease and risk of myasthenia gravis – nationwide population-based study

    Get PDF
    Background Case reports suggest there may be an association between celiac disease (CD) and myasthenia gravis (MG). Methods We identified 29,086 individuals with CD in Sweden from 1969 to 2008. We compared these individuals with 144,480 matched controls. Hazard ratios (HRs) for future MG (identified through ICD codes) were estimated using Cox regression. Results During 326,376 person-years of follow-up in CD patients, there were 7 MG cases (21/million person-years) compared to 22 MG cases in controls during 1,642,273 years of follow-up (14/million person-years) corresponding to a HR of 1.48 (95% CI = 0.64–3.41). HRs did not differ when stratifying for age, sex or calendar period. HRs were highest in the first year after follow-up, though insignificant. Individuals with CD were at no increased risk of MG more than 5 years after CD diagnosis (HR = 0.70; 95% CI = 0.16–3.09). Conclusion This study found no increased risk of MG in patients with CD

    Liver Directed Drugs for Transthyretin-Mediated Amyloidosis

    Get PDF
    AIM: Transthyretin-mediated amyloidosis (ATTR) is a rare, under-recognized, progressively debilitating, fatal disease caused by the aggregation and extracellular deposition of amyloid transthyretin (TTR) fibrils in multiple organs and tissues throughout the body. TTR is predominantly synthesized by the liver, and normally circulates as a homotetramer, while misfolded monomers aggregate to form amyloid fibrils. One strategy to treat ATTR amyloidosis is to reduce the amount of TTR produced by the liver using drugs that directly target the TTR mRNA or gene. METHODS: This narrative review focuses on how TTR gene silencing tools act to reduce TTR production, describing strategies for improved targeted delivery of these agents to hepatocytes where TTR is preferentially expressed. RESULTS: Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), termed RNA silencers, cause selective degradation of TTR mRNA, while a TTR gene editing tool reduces TTR expression by introducing nonsense mutations into the TTR gene. Two strategies to facilitate tissue-specific delivery of these nucleic acid-based drugs employ endogenous receptors expressed by hepatocytes. Lipid nanoparticles (LNPs) that recruit apolipoprotein E support low density lipoprotein receptor-mediated uptake of unconjugated siRNA and is now used for CRISPR gene editing tools. Additionally, conjugating N-acetylgalactosamine (GalNAc) moieties to ASOs or siRNAs facilitates receptor-mediated uptake by the asialoglycoprotein receptor. CONCLUSION: ATTR is a progressive disease with various clinical manifestations due to TTR aggregation, deposition, and amyloid formation. Receptor-targeted ligands (e.g., GalNAc) and nanoparticle encapsulation (e.g., LNPs) are technologies to deliver ASOs, siRNAs, and gene editing tools to hepatocytes, the primary location of TTR synthesis

    RAGE Deficiency Improves Postinjury Sciatic Nerve Regeneration in Type 1 Diabetic Mice

    Full text link
    Peripheral neuropathy and insensate limbs and digits cause significant morbidity in diabetic individuals. Previous studies showed that deletion of the receptor for advanced end-glycation products (RAGE) in mice was protective in long-term diabetic neuropathy. Here, we tested the hypothesis that RAGE suppresses effective axonal regeneration in superimposed acute peripheral nerve injury attributable to tissue-damaging inflammatory responses. We report that deletion of RAGE, particularly in diabetic mice, resulted in significantly higher myelinated fiber densities and conduction velocities consequent to acute sciatic nerve crush compared with wild-type control animals. Consistent with key roles for RAGE-dependent inflammation, reconstitution of diabetic wild-type mice with RAGE-null versus wild-type bone marrow resulted in significantly improved axonal regeneration and restoration of function. Diabetic RAGE-null mice displayed higher numbers of invading macrophages in the nerve segments postcrush compared with wild-type animals, and these macrophages in diabetic RAGE-null mice displayed greater M2 polarization. In vitro, treatment of wild-type bone marrow–derived macrophages with advanced glycation end products (AGEs), which accumulate in diabetic nerve tissue, increased M1 and decreased M2 gene expression in a RAGE-dependent manner. Blockade of RAGE may be beneficial in the acute complications of diabetic neuropathy, at least in part, via upregulation of regeneration signals

    Inotersen preserves or improves quality of life in hereditary transthyretin amyloidosis

    Get PDF
    Objective: To examine the impact on quality of life (QOL) of patients with hATTR amyloidosis with polyneuropathy treated with inotersen (Tegsedi™) versus placebo. Methods: Data were from the NEURO-TTR trial (ClinicalTrials.gov Identifier: NCT01737398), a phase 3, multinational, randomized, double-blind, placebo-controlled study of inotersen in patients with hATTR amyloidosis with polyneuropathy. At baseline and week 66, QOL measures-the Norfolk-QOL-Diabetic Neuropathy (DN) questionnaire and SF-36v2® Health Survey (SF-36v2)-were assessed. Treatment differences in mean changes in QOL from baseline to week 66 were tested using mixed-effect models with repeated measures. Responder analyses compared the percentages of patients whose QOL meaningfully improved or worsened from baseline to week 66 in inotersen and placebo arms. Descriptive analysis of item responses examined treatment differences in specific activities and functions at week 66. Results: Statistically significant mean differences between treatment arms were observed for three of five Norfolk-QOL-DN domains and five of eight SF-36v2 domains, with better outcomes for inotersen than placebo in physical functioning, activities of daily living, neuropathic symptoms, pain, role limitations due to health problems, and social functioning. A larger percentage of patients in the inotersen arm than the placebo arm showed preservation or improvement in Norfolk-QOL-DN and SF-36v2 scores from baseline to week 66. Responses at week 66 showed more substantial problems with daily activities and functioning for patients in the placebo arm than in the inotersen arm. Conclusion: Patients with hATTR amyloidosis with polyneuropathy treated with inotersen showed preserved or improved QOL at 66 weeks compared to those who received placebo.This research was funded by Akcea Therapeutics and Ionis Pharmaceuticals, Incinfo:eu-repo/semantics/publishedVersio

    Long-term efficacy and safety of inotersen for hereditary transthyretin amyloidosis: NEURO-TTR open-label extension 3-year update

    Get PDF
    © The Author(s) 2022 Open Access This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/Background: Hereditary transthyretin amyloidosis (hATTR/ATTRv) results from the deposition of misfolded transthyretin (TTR) throughout the body, including peripheral nerves. Inotersen, an antisense oligonucleotide inhibitor of hepatic TTR production, demonstrated a favorable efficacy and safety profile in patients with the polyneuropathy associated with hATTR in the NEURO-TTR (NCT01737398) study. We report longer-term efficacy and safety data for inotersen, with a median treatment exposure of 3 years. Methods: Patients who satisfactorily completed NEURO-TTR were enrolled in its open-label extension (OLE) study. Efficacy assessments included the modified Neuropathy Impairment Score + 7 (mNIS + 7), Norfolk Quality of Life-Diabetic Neuropathy (Norfolk QoL-DN) questionnaire total score, and the Short Form 36 (SF-36v2) Health Survey Physical Component Summary score. Safety and tolerability were also assessed. Efficacy is reported for patients living in Europe and North America (this cohort completed the study approximately 9 months before the remaining group of patients outside these regions); safety is reported for the full safety dataset, comprising patients living in Europe, North America, and Latin America/Australasia. This study is registered with ClinicalTrials.gov, identifier NCT02175004. Results: In the Europe and North America cohort of the NEURO-TTR study, 113/141 patients (80.1%) completed the study, and 109 patients participated in the OLE study. A total of 70 patients continued to receive inotersen (inotersen-inotersen) and 39 switched from placebo to inotersen (placebo-inotersen). The placebo-inotersen group demonstrated sustained improvement in neurological disease progression as measured by mNIS + 7, compared with predicted worsening based on projection of the NEURO-TTR placebo data (estimated natural history). The inotersen-inotersen group demonstrated sustained benefit, as measured by mNIS + 7, Norfolk QoL-DN, and SF-36v2, compared with estimated natural history as well as compared with the placebo-inotersen group. With a maximum exposure of 6.2 years, inotersen was not associated with any additional safety concerns or increased toxicity in the OLE study. Platelet and renal monitoring were effective in reducing the risk of severe adverse events in the OLE study. Conclusion: Inotersen treatment for > 3 years slowed progression of the polyneuropathy associated with hATTR, and no new safety signals were observed.info:eu-repo/semantics/publishedVersio

    A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot–Marie–Tooth type 1A

    Get PDF
    Background: Charcot-Marie-Tooth disease type 1A (CMT1A) is a rare, orphan, hereditary neuromuscular disorder with no cure and for which only symptomatic treatment is currently available. A previous phase 2 trial has shown preliminary evidence of efficacy for PXT3003 in treating CMT1A. This phase 3, international, randomized, double-blind, placebo-controlled study further investigated the efficacy and safety of high- or low-dose PXT3003 (baclofen/naltrexone/D-sorbitol [mg]: 6/0.70/210 or 3/0.35/105) in treating subjects with mild to moderate CMT1A. Methods: In this study, 323 subjects with mild-to-moderate CMT1A were randomly assigned in a 1:1:1 ratio to receive 5 mL of high- or low-dose PXT3003, or placebo, orally twice daily for up to 15 months. Efficacy was assessed using the change in Overall Neuropathy Limitations Scale total score from baseline to months 12 and 15 (primary endpoint). Secondary endpoints included the 10-m walk test and other assessments. The high-dose group was discontinued early due to unexpected crystal formation in the high-dose formulation, which resulted in an unanticipated high discontinuation rate, overall and especially in the high-dose group. The statistical analysis plan was adapted to account for the large amount of missing data before database lock, and a modified full analysis set was used in the main analyses. Two sensitivity analyses were performed to check the interpretation based on the use of the modified full analysis set. Results: High-dose PXT3003 demonstrated significant improvement in the Overall Neuropathy Limitations Scale total score vs placebo (mean difference: - 0.37 points; 97.5% CI [- 0.68 to - 0.06]; p = 0.008), and consistent treatment effects were shown in the sensitivity analyses. Both PXT3003 doses were safe and well-tolerated. Conclusion: The high-dose group demonstrated a statistically significant improvement in the primary endpoint and a good safety profile. Overall, high-dose PXT3003 is a promising treatment option for patients with Charcot-Marie-Tooth disease type 1A
    corecore