7 research outputs found

    Hiding in plain sight: discovery and phylogeography of a cryptic species of Trichinella (Nematoda: Trichinellidae) in wolverine (Gulo gulo)

    Get PDF
    Understanding parasite diversity and distribution is essential in managing the potential impact of para- sitic diseases in animals and people. Imperfect diagnostic methods, however, may conceal cryptic species. Here, we report the discovery and phylogeography of a previously unrecognized species of Trichinella in wolverine (Gulo gulo) from northwestern Canada that was indistinguishable from T. nativa using the stan- dard multiplex PCR assay based on the expansion segment 5 (ESV) of ribosomal DNA. The novel genotype, designated as T13, was discovered when sequencing the mitochondrial genome. Phylogenetic analyses of the mitochondrial genome and of 15 concatenated single-copy orthologs of nuclear DNA indicated a com- mon ancestor for the encapsulated clade is shared by a subclade containing Trichinella spiralis and Trichinella nelsoni, and a subclade containing T13 and remaining taxa: T12 + (T2 + T6) + [(T5 + T9) + (T 3 + T8)]. Of 95 individual hosts from 12 species of mammalian carnivores from northwestern Canada from which larvae were identified as T. nativa on multiplex PCR, only wolverines were infected with T13 (14 of 42 individuals). These infections were single or mixed with T. nativa and/or T6. Visual examination and motility testing confirmed that T13 is encapsulated and likely freeze-tolerant. We developed a new Polymerase Chain Reaction-Restriction Fragment Length Polymorphism which unequivocally distinguishes between T13 and T. nativa. We propose Trichinella chanchalensis n. sp. for T13, based on significant genetic divergence from other species of Trichinella and broad-based sampling of the Trichinella genome. Exploration of Alaskan and Siberian isolates may contribute to further resolution of a phylogeo- graphically complex history for species of Trichinella across Beringia, including Trichinella chanchalensis n. sp. (T13

    Hiding in plain sight: discovery and phylogeography of a cryptic species of Trichinella (Nematoda: Trichinellidae) in wolverine (Gulo gulo)

    Get PDF
    Understanding parasite diversity and distribution is essential in managing the potential impact of para- sitic diseases in animals and people. Imperfect diagnostic methods, however, may conceal cryptic species. Here, we report the discovery and phylogeography of a previously unrecognized species of Trichinella in wolverine (Gulo gulo) from northwestern Canada that was indistinguishable from T. nativa using the stan- dard multiplex PCR assay based on the expansion segment 5 (ESV) of ribosomal DNA. The novel genotype, designated as T13, was discovered when sequencing the mitochondrial genome. Phylogenetic analyses of the mitochondrial genome and of 15 concatenated single-copy orthologs of nuclear DNA indicated a com- mon ancestor for the encapsulated clade is shared by a subclade containing Trichinella spiralis and Trichinella nelsoni, and a subclade containing T13 and remaining taxa: T12 + (T2 + T6) + [(T5 + T9) + (T 3 + T8)]. Of 95 individual hosts from 12 species of mammalian carnivores from northwestern Canada from which larvae were identified as T. nativa on multiplex PCR, only wolverines were infected with T13 (14 of 42 individuals). These infections were single or mixed with T. nativa and/or T6. Visual examination and motility testing confirmed that T13 is encapsulated and likely freeze-tolerant. We developed a new Polymerase Chain Reaction-Restriction Fragment Length Polymorphism which unequivocally distinguishes between T13 and T. nativa. We propose Trichinella chanchalensis n. sp. for T13, based on significant genetic divergence from other species of Trichinella and broad-based sampling of the Trichinella genome. Exploration of Alaskan and Siberian isolates may contribute to further resolution of a phylogeo- graphically complex history for species of Trichinella across Beringia, including Trichinella chanchalensis n. sp. (T13

    A new multiplexed magnetic capture—Droplet digital PCR tool for monitoring wildlife population health and pathogen surveillance

    No full text
    Abstract Anthropogenic stressors are exacerbating the emergence and spread of pathogens worldwide. In regions like the Arctic, where ecosystems are particularly susceptible, marked changes are predicted in regional diversity, intensity, and patterns of infectious diseases. To understand such rapidly changing host‐pathogen dynamics and mitigate the impacts of novel pathogens, we need sensitive disease surveillance tools. We developed and validated a novel multiplexed, magnetic capture, and ddPCR tool for the surveillance of multiple pathogens in polar bears, a sentinel species that is considered susceptible to climate change and other stressors with a pan‐Arctic distribution. Through sequence‐specific magnetic capture, we concentrated five target template sequences from three zoonotic bacteria (Erysipelothrix rhusiopathiae, Francisella tularensis, and Mycobacterium tuberculosis complex) and two parasitic (Toxoplasma gondii and Trichinella spp.) pathogens from large quantities (<100 g) of host tissue. We then designed and validated two multiplexed probe‐based ddPCR assays for the amplification and detection of the low‐concentration target DNA. Validations used 48 polar bear tissues (muscle and liver). We detected 14, 1, 3, 4, and 22 tissue positives for E. rhusiopathiae, F. tularensis, M. tuberculosis complex, T. gondii, and Trichinella spp., respectively. These multiplexed assays offer a rapid, specific tool for quantifying and monitoring the changing geographical and host distributions of pathogens relevant to human and animal health

    Multi-pathogen serological survey of migratory caribou herds: A snapshot in time

    Get PDF
    Pathogens can impact host survival, fecundity, and population dynamics even when no obvious disease is observed. Few baseline data on pathogen prevalence and diversity of caribou are available, which hampers our ability to track changes over time and evaluate impacts on caribou health. Archived blood samples collected from ten migratory caribou herds in Canada and two in Greenland were used to test for exposure to pathogens that have the potential to effect population productivity, are zoonotic or are emerging. Relationships between seroprevalence and individual, population, and other health parameters were also examined. For adult caribou, the highest overall seroprevalence was for alphaherpesvirus (49%, n = 722), pestivirus (49%, n = 572) and Neospora caninum (27%, n = 452). Lower seroprevalence was found for parainfluenza virus type 3 (9%, n = 708), Brucella suis (2%, n = 758), and Toxoplasma gondii (2%, n = 706). No animal tested positive for antibodies against West Nile virus (n = 418) or bovine respiratory syncytial virus (n = 417). This extensive multi-pathogen survey of migratory caribou herds provides evidence that caribou are exposed to pathogens that may have impacts on herd health and revealed potential interactions between pathogens as well as geographical differences in pathogen exposure that could be linked to the bio-geographical history of caribou. Caribou are a keystone species and the socio-economic cornerstone of many indigenous cultures across the North. The results from this study highlight the urgent need for a better understanding of pathogen diversity and the impact of pathogens on caribou health

    Current state of knowledge on biological effects from contaminants on arctic wildlife and fish

    No full text
    Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to organohalogen compounds (OHCs) in Arctic biota, there has been a considerable number of new Arctic effect studies. Here, we provide an update on the state of the knowledge of OHC, and also include mercury, exposure and/or associated effects in key Arctic marine and terrestrial mammal and bird species as well as in fish by reviewing the literature published since the last AMAP assessment in 2010. We aimed at updating the knowledge of how single but also combined health effects are or can be associated to the exposure to single compounds or mixtures of OHCs. We also focussed on assessing both potential individual as well as population health impacts using population-specific exposure data post 2000. We have identified quantifiable effects on vitamin metabolism, immune functioning, thyroid and steroid hormone balances, oxidative stress, tissue pathology, and reproduction. As with the previous assessment, a wealth of documentation is available for biological effects in marine mammals and seabirds, and sentinel species such as the sledge dog and Arctic fox, but information for terrestrial vertebrates and fish remain scarce. While hormones and vitamins are thoroughly studied, oxidative stress, immunotoxic and reproductive effects need further investigation. Depending on the species and population, some OHCs and mercury tissue contaminant burdens post 2000 were observed to be high enough to exceed putative risk threshold levels that have been previously estimated for non-target species or populations outside the Arctic. In this assessment, we made use of risk quotient calculations to summarize the cumulative effects of different OHC classes and mercury for which critical body burdens can be estimated for wildlife across the Arctic. As our ultimate goal is to better predict or estimate the effects of OHCs and mercury in Arctic wildlife at the individual, population and ecosystem level, there remain numerous knowledge gaps on the biological effects of exposure in Arctic biota. These knowledge gaps include the establishment of concentration thresholds for individual compounds as well as for realistic cocktail mixtures that in fact indicate biologically relevant, and not statistically determined, health effects for specific species and subpopulations. Finally, we provide future perspectives on understanding Arctic wildlife health using new in vivo, in vitro, and in silico techniques, and provide case studies on multiple stressors to show that future assessments would benefit from significant efforts to integrate human health, wildlife ecology and retrospective and forecasting aspects into assessing the biological effects of OHC and mercury exposure in Arctic wildlife and fish
    corecore