3,222 research outputs found

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Nonequilibrium Dynamics in Noncommutative Spacetime

    Get PDF
    We study the effects of spacetime noncommutativity on the nonequilibrium dynamics of particles in a thermal bath. We show that the noncommutative thermal bath does not suffer from any further IR/UV mixing problem in the sense that all the finite-temperature non-planar quantities are free from infrared singularities. We also point out that the combined effect of finite temperature and noncommutative geometry has a distinct effect on the nonequilibrium dynamics of particles propagating in a thermal bath: depending on the momentum of the mode of concern, noncommutative geometry may switch on or switch off their decay and thermalization. This momentum dependent alternation of the decay and thermalization rates could have significant impacts on the nonequilibrium phenomena in the early universe at which spacetime noncommutativity may be present. Our results suggest a re-examination of some of the important processes in the early universe such as reheating after inflation, baryogenesis and the freeze-out of superheavy dark matter candidates.Comment: 24 pages, 2 figure

    On soft singularities at three loops and beyond

    Get PDF
    We report on further progress in understanding soft singularities of massless gauge theory scattering amplitudes. Recently, a set of equations was derived based on Sudakov factorization, constraining the soft anomalous dimension matrix of multi-leg scattering amplitudes to any loop order, and relating it to the cusp anomalous dimension. The minimal solution to these equations was shown to be a sum over color dipoles. Here we explore potential contributions to the soft anomalous dimension that go beyond the sum-over-dipoles formula. Such contributions are constrained by factorization and invariance under rescaling of parton momenta to be functions of conformally invariant cross ratios. Therefore, they must correlate the color and kinematic degrees of freedom of at least four hard partons, corresponding to gluon webs that connect four eikonal lines, which first appear at three loops. We analyze potential contributions, combining all available constraints, including Bose symmetry, the expected degree of transcendentality, and the singularity structure in the limit where two hard partons become collinear. We find that if the kinematic dependence is solely through products of logarithms of cross ratios, then at three loops there is a unique function that is consistent with all available constraints. If polylogarithms are allowed to appear as well, then at least two additional structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4; added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11, 5.12 and 5.29); 38 pages, 3 figure

    The Quark Beam Function at NNLL

    Get PDF
    In hard collisions at a hadron collider the most appropriate description of the initial state depends on what is measured in the final state. Parton distribution functions (PDFs) evolved to the hard collision scale Q are appropriate for inclusive observables, but not for measurements with a specific number of hard jets, leptons, and photons. Here the incoming protons are probed and lose their identity to an incoming jet at a scale \mu_B << Q, and the initial state is described by universal beam functions. We discuss the field-theoretic treatment of beam functions, and show that the beam function has the same RG evolution as the jet function to all orders in perturbation theory. In contrast to PDF evolution, the beam function evolution does not mix quarks and gluons and changes the virtuality of the colliding parton at fixed momentum fraction. At \mu_B, the incoming jet can be described perturbatively, and we give a detailed derivation of the one-loop matching of the quark beam function onto quark and gluon PDFs. We compute the associated NLO Wilson coefficients and explicitly verify the cancellation of IR singularities. As an application, we give an expression for the next-to-next-to-leading logarithmic order (NNLL) resummed Drell-Yan beam thrust cross section.Comment: 54 pages, 9 figures; v2: notation simplified in a few places, typos fixed; v3: journal versio

    Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

    Get PDF
    Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations

    Sequential Metric Dimension

    Get PDF
    International audienceSeager introduced the following game in 2013. An invisible and immobile target is hidden at some vertex of a graph GG. Every step, one vertex vv of GG can be probed which results in the knowledge of the distance between vv and the target. The objective of the game is to minimize the number of steps needed to locate the target, wherever it is. We address the generalization of this game where k1k ≥ 1 vertices can be probed at every step. Our game also generalizes the notion of the metric dimension of a graph. Precisely, given a graph GG and two integers k,1k, ≥ 1, the Localization Problem asks whether there exists a strategy to locate a target hidden in GG in at most steps by probing at most kk vertices per step. We show this problem is NP-complete when kk (resp.,) is a fixed parameter. Our main results are for the class of trees where we prove this problem is NP-complete when kk and are part of the input but, despite this, we design a polynomial-time (+1)-approximation algorithm in trees which gives a solution using at most one more step than the optimal one. It follows that the Localization Problem is polynomial-time solvable in trees if kk is fixed

    On the renormalization of multiparton webs

    Get PDF
    We consider the recently developed diagrammatic approach to soft-gluon exponentiation in multiparton scattering amplitudes, where the exponent is written as a sum of webs - closed sets of diagrams whose colour and kinematic parts are entangled via mixing matrices. A complementary approach to exponentiation is based on the multiplicative renormalizability of intersecting Wilson lines, and their subsequent finite anomalous dimension. Relating this framework to that of webs, we derive renormalization constraints expressing all multiple poles of any given web in terms of lower-order webs. We examine these constraints explicitly up to four loops, and find that they are realised through the action of the web mixing matrices in conjunction with the fact that multiple pole terms in each diagram reduce to sums of products of lower-loop integrals. Relevant singularities of multi-eikonal amplitudes up to three loops are calculated in dimensional regularization using an exponential infrared regulator. Finally, we formulate a new conjecture for web mixing matrices, involving a weighted sum over column entries. Our results form an important step in understanding non-Abelian exponentiation in multiparton amplitudes, and pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure

    Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework

    Get PDF
    Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes

    Association of Retinal and Macular Damage with Brain Atrophy in Multiple Sclerosis

    Get PDF
    Neuroaxonal degeneration in the central nervous system contributes substantially to the long term disability in multiple sclerosis (MS) patients. However, in vivo determination and monitoring of neurodegeneration remain difficult. As the widely used MRI-based approaches, including the brain parenchymal fraction (BPF) have some limitations, complementary in vivo measures for neurodegeneration are necessary. Optical coherence tomography (OCT) is a potent tool for the detection of MS-related retinal neurodegeneration. However, crucial aspects including the association between OCT- and MRI-based atrophy measures or the impact of MS-related parameters on OCT parameters are still unclear. In this large prospective cross-sectional study on 104 relapsing remitting multiple sclerosis (RRMS) patients we evaluated the associations of retinal nerve fiber layer thickness (RNFLT) and total macular volume (TMV) with BPF and addressed the impact of disease-determining parameters on RNFLT, TMV or BPF. BPF, normalized for subject head size, was estimated with SIENAX. Relations were analyzed primarily by Generalized Estimating Equation (GEE) models considering within-patient inter-eye relations. We found that both RNFLT (p = 0.019, GEE) and TMV (p = 0.004, GEE) associate with BPF. RNFLT was furthermore linked to the disease duration (p<0.001, GEE) but neither to disease severity nor patients' age. Contrarily, BPF was rather associated with severity (p<0.001, GEE) than disease duration and was confounded by age (p<0.001, GEE). TMV was not associated with any of these parameters. Thus, we conclude that in RRMS patients with relatively short disease duration and rather mild disability RNFLT and TMV reflect brain atrophy and are thus promising parameters to evaluate neurodegeneration in MS. Furthermore, our data suggest that RNFLT and BPF reflect different aspects of MS. Whereas BPF best reflects disease severity, RNFLT might be the better parameter for monitoring axonal damage longitudinally. Longitudinal studies are necessary for validation of data and to further clarify the relevance of TMV
    corecore