22,324 research outputs found
Analytic Solution for the Critical State in Superconducting Elliptic Films
A thin superconductor platelet with elliptic shape in a perpendicular
magnetic field is considered. Using a method originally applied to circular
disks, we obtain an approximate analytic solution for the two-dimensional
critical state of this ellipse. In the limits of the circular disk and the long
strip this solution is exact, i.e. the current density is constant in the
region penetrated by flux. For ellipses with arbitrary axis ratio the obtained
current density is constant to typically 0.001, and the magnetic moment
deviates by less than 0.001 from the exact value. This analytic solution is
thus very accurate. In increasing applied magnetic field, the penetrating flux
fronts are approximately concentric ellipses whose axis ratio b/a < 1 decreases
and shrinks to zero when the flux front reaches the center, the long axis
staying finite in the fully penetrated state. Analytic expressions for these
axes, the sheet current, the magnetic moment, and the perpendicular magnetic
field are presented and discussed. This solution applies also to
superconductors with anisotropic critical current if the anisotropy has a
particular, rather realistic form.Comment: Revtex file and 13 postscript figures, gives 10 pages of text with
figures built i
Theory of Type-II Superconductors with Finite London Penetration Depth
Previous continuum theory of type-II superconductors of various shapes with
and without vortex pinning in an applied magnetic field and with transport
current, is generalized to account for a finite London penetration depth
lambda. This extension is particularly important at low inductions B, where the
transition to the Meissner state is now described correctly, and for films with
thickness comparable to or smaller than lambda. The finite width of the surface
layer with screening currents and the correct dc and ac responses in various
geometries follow naturally from an equation of motion for the current density
in which the integral kernel now accounts for finite lambda. New geometries
considered here are thick and thin strips with applied current, and `washers',
i.e. thin film squares with a slot and central hole as used for SQUIDs.Comment: 14 pages, including 15 high-resolution figure
Critical State in Thin Anisotropic Superconductors of Arbitrary Shape
A thin flat superconductor of arbitrary shape and with arbitrary in-plane and
out-of-plane anisotropy of flux-line pinning is considered, in an external
magnetic field normal to its plane.
It is shown that the general three-dimensional critical state problem for
this superconductor reduces to the two-dimensional problem of an infinitely
thin sample of the same shape but with a modified induction dependence of the
critical sheet current. The methods of solving the latter problem are well
known. This finding thus enables one to study the critical states in realistic
samples of high-Tc superconductors with various types of anisotropic flux-line
pinning. As examples, we investigate the critical states of long strips and
rectangular platelets of high-Tc superconductors with pinning either by the
ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex
Three Dimensional Distorted Black Holes: Initial Data and Evolution
We present a new class of 3D black hole initial data sets for numerical
relativity. These data sets go beyond the axisymmetric, ``gravity wave plus
rotating black hole'' single black hole data sets by creating a dynamic,
distorted hole with adjustable distortion parameters in 3D. These data sets
extend our existing test beds for 3D numerical relativity, representing the
late stages of binary black hole collisions resulting from on-axis collision or
3D spiralling coalescence, and should provide insight into the physics of such
systems. We describe the construction of these sets, the properties for a
number of example cases, and report on progress evolving them.Comment: 3 pages, 2 postscript figures, LaTeX, uses mprocl.sty (available at
http://shemesh.fiz.huji.ac.il/MG8/submission.html) To appear in the
proceedings of the Marcel Grossmann 8 (Jerusalem, 1997
Meissner-London currents in superconductors with rectangular cross section
Exact analytic solutions are presented for the magnetic moment and screening
currents in the Meissner state of superconductor strips with rectangular cross
section in a perpendicular magnetic field and/or with transport current. The
extension to finite London penetration is achieved by an elegant numerical
method which works also for disks. The surface current in the specimen corners
diverges as l^(-1/3) where l is the distance from the corner. This enhancement
reduces the barrier for vortex penetration and should increase the nonlinear
Meissner effect in d-wave superconductors
Current density inhomogeneity throughout the thickness of superconducting films and its effect on their irreversible magnetic properties
We calculate the distribution of the current density in superconducting
films along the direction of an external field applied perpendicular to the
film plane. Our analysis reveals that in the presence of bulk pinning is
inhomogeneous on a length scale of order the inter vortex distance. This
inhomogeneity is significantly enhanced in the presence of surface pinning. We
introduce new critical state model, which takes into account the current
density variations throughout the film thickness, and show how these variations
give rise to the experimentally observed thickness dependence of and
magnetic relaxation rate.Comment: RevTex, 9 PS figures. To appear in Phys. Rev.
Anisotropic superconducting strip in an oblique magnetic field
The critical state of a thin superconducting strip in an oblique applied
magnetic field H_a is analyzed without any restrictions on the dependence of
the critical current density j_c on the local magnetic induction {\bf B}. In
such a strip, j_c is not constant across the thickness of the sample and
differs from J_c/d, where J_c is the critical sheet current. It is shown that
in contrast to the case of {\bf B}-independent j_c, the profiles H_z(x) of the
magnetic-field component perpendicular to the strip plane generally depend on
the in-plane component H_{ax} of the applied magnetic field H_a, and on how H_a
is switched on. On the basis of this analysis, we explain how and under what
conditions one can extract j_c({\bf B}) from the magnetic-field profiles H_z(x)
measured by magneto-optical imaging or by Hall-sensor arrays at the upper
surface of the strip.Comment: 7 pages with 4 figure
Hysteretic characteristics of a double stripline in the critical state
Analytical investigations of the critical state are carried out for a
superconducting stripline consisting of two individual coplanar strips with an
arbitrary distance between them. Two different cases are considered: a
stripline with transport current and strips exposed to a perpendicular magnetic
field. In the second case, the obtained solutions correspond to "fieldlike"
(for unclosed strips) and "currentlike" (for a long rectangular superconducting
loop) states in an isolated strip to which both a transport current and a
magnetic field are applied with constant ratio.Comment: 8 pages, 6 figures. accepted by SS
Thermal one- and two-graviton Green's functions in the temporal gauge
The thermal one- and two-graviton Green's function are computed using a
temporal gauge. In order to handle the extra poles which are present in the
propagator, we employ an ambiguity-free technique in the imaginary-time
formalism. For temperatures T high compared with the external momentum, we
obtain the leading T^4 as well as the subleading T^2 and log(T) contributions
to the graviton self-energy. The gauge fixing independence of the leading T^4
terms as well as the Ward identity relating the self-energy with the one-point
function are explicitly verified. We also verify the 't Hooft identities for
the subleading T^2 terms and show that the logarithmic part has the same
structure as the residue of the ultraviolet pole of the zero temperature
graviton self-energy. We explicitly compute the extra terms generated by the
prescription poles and verify that they do not change the behavior of the
leading and sub-leading contributions from the hard thermal loop region. We
discuss the modification of the solutions of the dispersion relations in the
graviton plasma induced by the subleading T^2 contributions.Comment: 17 pages, 5 figures. Revised version to be published in Phys. Rev.
Buckling instability in type-II superconductors with strong pinning
We predict a novel buckling instability in the critical state of thin type-II
superconductors with strong pinning. This elastic instability appears in high
perpendicular magnetic fields and may cause an almost periodic series of flux
jumps visible in the magnetization curve. As an illustration we apply the
obtained criteria to a long rectangular strip.Comment: Submitted to Phys. Rev. Let
- …