1,531 research outputs found

    Advances in Bayesian Time Series Modeling and the Study of Politics: Theory Testing, Forecasting, and Policy Analysis."

    Get PDF
    Bayesian approaches to the study of politics are increasingly popular. But Bayesian approaches to modeling multiple time series have not been critically evaluated. This is in spite of the potential value of these models in international relations, political economy, and other fields of our discipline. We review recent developments in Bayesian multi-equation time series modeling in theory testing, forecasting, and policy analysis. Methods for constructing Bayesian measures of uncertainty of impulse responses (Bayesian shape error bands) are explained. A reference prior for these models that has proven useful in short-and medium-term forecasting in macroeconomics is described. Once modified to incorporate our experience analyzing political data and our theories, this prior can enhance our ability to forecast over the short and medium terms complex political dynamics like those exhibited by certain international conflicts. In addition, we explain how contingent Bayesian forecasts can be constructed, contingent Bayesian forecasts that embody policy counterfactuals. The value of these new Bayesian methods is illustrated in a reanalysis of the Israeli-Palestinian conflict of the 1980s

    Synthesizing Political Zero-Shot Relation Classification via Codebook Knowledge, NLI, and ChatGPT

    Full text link
    Recent supervised models for event coding vastly outperform pattern-matching methods. However, their reliance solely on new annotations disregards the vast knowledge within expert databases, hindering their applicability to fine-grained classification. To address these limitations, we explore zero-shot approaches for political event ontology relation classification, by leveraging knowledge from established annotation codebooks. Our study encompasses both ChatGPT and a novel natural language inference (NLI) based approach named ZSP. ZSP adopts a tree-query framework that deconstructs the task into context, modality, and class disambiguation levels. This framework improves interpretability, efficiency, and adaptability to schema changes. By conducting extensive experiments on our newly curated datasets, we pinpoint the instability issues within ChatGPT and highlight the superior performance of ZSP. ZSP achieves an impressive 40% improvement in F1 score for fine-grained Rootcode classification. ZSP demonstrates competitive performance compared to supervised BERT models, positioning it as a valuable tool for event record validation and ontology development. Our work underscores the potential of leveraging transfer learning and existing expertise to enhance the efficiency and scalability of research in the field.Comment: Preprin

    The Sloan Digital Sky Survey Reverberation Mapping Project: Velocity Shifts of Quasar Emission Lines

    Full text link
    Quasar emission lines are often shifted from the systemic velocity due to various dynamical and radiative processes in the line-emitting region. The level of these velocity shifts depends both on the line species and on quasar properties. We study velocity shifts for the line peaks of various narrow and broad quasar emission lines relative to systemic using a sample of 849 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. The coadded (from 32 epochs) spectra of individual quasars have sufficient signal-to-noise ratio (SNR) to measure stellar absorption lines to provide reliable systemic velocity estimates, as well as weak narrow emission lines. The sample also covers a large dynamic range in quasar luminosity (~2 dex), allowing us to explore potential luminosity dependence of the velocity shifts. We derive average line peak velocity shifts as a function of quasar luminosity for different lines, and quantify their intrinsic scatter. We further quantify how well the peak velocity can be measured for various lines as a function of continuum SNR, and demonstrate there is no systematic bias in the line peak measurements when the spectral quality is degraded to as low as SNR~3 per SDSS pixel. Based on the observed line shifts, we provide empirical guidelines on redshift estimation from [OII]3728, [OIII]5008, [NeV]3426, MgII, CIII], HeII1640, broad Hbeta, CIV, and SiIV, which are calibrated to provide unbiased systemic redshifts in the mean, but with increasing intrinsic uncertainties of 46, 56, 119, 205, 233, 242, 400, 415, and 477 km/s, in addition to the measurement uncertainties. These more realistic redshift uncertainties are generally much larger than the formal uncertainties reported by the redshift pipelines for spectroscopic quasar surveys, and demonstrate the infeasibility of measuring quasar redshifts to better than ~200 km/s with only broad lines.Comment: matched to the published version; minor changes and conclusions unchange

    X-ray Insights Into Interpreting CIV Blueshifts and Optical/UV Continua

    Full text link
    We present 0.5-8.0 keV Chandra observations of six bright quasars that represent extrema in quasar emission-line properties -- three quasars each with small and large blueshifts of the CIV emission line with respect to the systemic redshift of the quasars. Supplemented with seven archival Chandra observations of quasars that met our selection criteria, we investigate the origin of this emission-line phenomenon in the general context of the structure of quasars. We find that the quasars with the largest CIV blueshifts show evidence, from joint-spectral fitting, for intrinsic X-ray absorption (N_H ~ 10^22 cm^-2). Given the lack of accompanying CIV absorption, this gas is likely to be highly ionized, and may be identified with the shielding gas in the disk-wind paradigm. Furthermore, we find evidence for a correlation of alpha_uv, the ultraviolet spectral index, with the hardness of the X-ray continuum; an analysis of independent Bright Quasar Survey data from the literature supports this conclusion. This result points to intrinsically red quasars having systematically flatter hard X-ray continua without evidence for X-ray absorption. We speculate on the origins of these correlations of X-ray properties with both CIV blueshift and alpha_uv and discuss the implications for models of quasar structure.Comment: 9 figs, 25 pages, AASTeX; accepted for publication in A

    The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    Get PDF
    We explore the variability of quasars in the MgII and Hbeta broad emission lines and UV/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 66 months, containing 357 quasars with MgII and 41 quasars with Hbeta . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 28542854 quasars with MgII and 572 quasars with Hbeta. The MgII emission line is significantly variable (Δf/f\Delta f/f 10% on 100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳5\gtrsim 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ\delta-function. Hbeta is more variable than MgII (roughly by a factor of 1.51.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1<z<21<z<2 quasars.Comment: 20 pages, 25 figures. ApJ accepted: minor revisions following referee repor

    Chandra Observations of SDSS J1004+4112: Constraints on the Lensing Cluster and Anomalous X-Ray Flux Ratios of the Quadruply Imaged Quasar

    Get PDF
    We present results from Chandra observations of SDSS J1004+4112, a strongly lensed quasar system with a maximum image separation of 15". All four bright images of the quasar, as well as resolved X-ray emission originating from the lensing cluster, are clearly detected. The emission from the lensing cluster extends out to approximately 1.5 arcmin. We measure the bolometric X-ray luminosity and temperature of the lensing cluster to be 4.7e44 erg s^-1 and 6.4 keV, consistent with the luminosity-temperature relation for distant clusters. The mass estimated from the X-ray observation shows excellent agreement with the mass derived from gravitational lensing. The X-ray flux ratios of the quasar images differ markedly from the optical flux ratios, and the combined X-ray spectrum of the images possesses an unusually strong Fe Kalpha emission line, both of which are indicative of microlensing.Comment: 9 pages, 5 figures. Accepted for publication in ApJ. Version with high-quality color figures at http://cosmic.riken.jp/ota/publications/index.htm

    A Population of X-ray Weak Quasars: PHL 1811 Analogs at High Redshift

    Full text link
    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z~2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs are notably X-ray weak by a mean factor of ~13. These sources lack broad absorption lines and have blue UV/optical continua, suggesting they are intrinsically X-ray weak. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our radio-quiet PHL 1811 analogs support a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be < 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties for a sample combining radio-quiet PHL 1811 analogs, PHL 1811, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, radio-quiet PHL 1811 analogs appear to be a subset (~30%) of radio-quiet weak-line quasars. The existence of a subset of quasars in which high-ionization "shielding gas" covers most of the BELR, but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X-ray bright. One of them appears to have jet-dominated X-ray emission, while the nature of the other remains unclear.Comment: ApJ accepted; 25 pages, 11 figures and 8 table

    The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview

    Full text link
    The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg2^2 field with the SDSS-III BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.Comment: 25 pages, submitted to ApJS; project website at http://www.sdssrm.or
    • …
    corecore