1,196 research outputs found
Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity
Transitions in structural heterogeneity of colloidal depletion gels formed
through short-range attractive interactions are correlated with their dynamical
arrest. The system is a density and refractive index matched suspension of 0.20
volume fraction poly(methyl methacyrlate) colloids with the non-adsorbing
depletant polystyrene added at a size ratio of depletant to colloid of 0.043.
As the strength of the short-range attractive interaction is increased,
clusters become increasingly structurally heterogeneous, as characterized by
number-density fluctuations, and dynamically immobilized, as characterized by
the single-particle mean-squared displacement. The number of free colloids in
the suspension also progressively declines. As an immobile cluster to gel
transition is traversed, structural heterogeneity abruptly decreases.
Simultaneously, the mean single-particle dynamics saturates at a localization
length on the order of the short-range attractive potential range. Both
immobile cluster and gel regimes show dynamical heterogeneity. Non-Gaussian
distributions of single particle displacements reveal enhanced populations of
dynamical trajectories localized on two different length scales. Similar
dependencies of number density fluctuations, free particle number and dynamical
length scales on the order of the range of short-range attraction suggests a
collective structural origin of dynamic heterogeneity in colloidal gels.Comment: 14 pages, 10 figure
Loss of solutions in shear banding fluids in shear banding fluids driven by second normal stress differences
Edge fracture occurs frequently in non-Newtonian fluids. A similar
instability has often been reported at the free surface of fluids undergoing
shear banding, and leads to expulsion of the sample. In this paper the
distortion of the free surface of such a shear banding fluid is calculated by
balancing the surface tension against the second normal stresses induced in the
two shear bands, and simultaneously requiring a continuous and smooth meniscus.
We show that wormlike micelles typically retain meniscus integrity when shear
banding, but in some cases can lose integrity for a range of average applied
shear rates during which one expects shear banding. This meniscus fracture
would lead to ejection of the sample as the shear banding region is swept
through. We further show that entangled polymer solutions are expected to
display a propensity for fracture, because of their much larger second normal
stresses. These calculations are consistent with available data in the
literature. We also estimate the meniscus distortion of a three band
configuration, as has been observed in some wormlike micellar solutions in a
cone and plate geometry.Comment: 23 pages, to be published in Journal of Rheolog
Switching kinetics of ferroelectric polymer nanomesas
The switching dynamics and switching time of ferroelectric nanomesas grown from the paraelectric phase of ultrathin Langmuir–Blodgett vinylidene fluoride and trifluoroethylene copolymer films are investigated. Ferroelectric nanomesas are created through heat treatment and self-organization and have an average height of 10 nm and an average diameter of 100 nm. Ferroelectric nanomesas are highly crystalline and are in the ferroelectric phase and switch faster than 50 μs. The dependence of switching time on applied voltage implies an extrinsic switching nature
Free volume dilatation in polymers by ortho-positronium
The possibility of positronium induced free volume cavity expansion in some polymers above the glass transition temperature was investigated using experimental positron annihilation lifetime data from the literature for polydimethylsiloxane, polyisobutylene, and polybutadiene as function of temperature. The results suggest that free volume sites can expand towards an equilibrium size, determined as the equilibrium Ps-bubble size defined earlier for low-molecular-weight liquids. The expansion can be explained by the increase of molecular mobility and hence decrease of relaxation times, which at the higher temperatures approach the o-Ps lifetimes. Nanoscale viscosities were estimated using Navier-Stokes equation and were found to be several orders of magnitude lower than the macroscopic viscosity at the same temperature
Tracking of fluorescently labeled polymer particles reveals surface effects during shear-controlled aggregation
Surface chemistry is believed to be the key parameter affecting the aggregation and breakage of colloidal suspensions when subjected to shear. To date, only a few works dealt with the understanding of the role of the physical and chemical properties of the particles’ surface upon aggregation under shear. Previous studies suggested that surface modifications strongly affect polymer particles’ adhesion, but it was very challenging to demonstrate this effect and monitor these alterations upon prolonged exposure to shear forces. More importantly, the mechanisms leading to these changes remain elusive. In this work, shear-induced aggregation experiments of polymer colloidal particles have been devised with the specific objective of highlighting material transfer and clarifying the role of the softness of the particle’s surface. To achieve this goal, polymer particles with a core–shell structure comprising fluorescent groups have been prepared so that the surface’s softness could be tuned by the addition of monomer acting as a plasticizer and the percentage of fluorescent particles could be recorded over time via confocal microscopy to detect eventual material transfer among different particles. For the first time, material exchange occurring on the soft surface of core–shell polymer microparticles upon aggregation under shear was observed and proved. More aptly, starting from a 50% labeled/nonlabeled mixture, an increase in the percentage of particles showing a fluorescent signature was recorded over time, reaching a fraction of 70% after 5 h
Spinodal-assisted crystallization in polymer melts
Recent experiments in some polymer melts quenched below the melting temperature have reported spinodal kinetics in small-angle x-ray scattering before the emergence of a crystalline structure. To explain these observations we propose that the coupling between density and chain conformation induces a liquid-liquid binodal within the equilibrium liquid-crystalline solid coexistence region. A simple phenomenological theory is developed to illustrate this idea, and several experimentally testable consequences are discussed. Shear is shown to enhance the kinetic role of the hidden binodal
Non-Equilibrium in Adsorbed Polymer Layers
High molecular weight polymer solutions have a powerful tendency to deposit
adsorbed layers when exposed to even mildly attractive surfaces. The
equilibrium properties of these dense interfacial layers have been extensively
studied theoretically. A large body of experimental evidence, however,
indicates that non-equilibrium effects are dominant whenever monomer-surface
sticking energies are somewhat larger than kT, a common case. Polymer
relaxation kinetics within the layer are then severely retarded, leading to
non-equilibrium layers whose structure and dynamics depend on adsorption
kinetics and layer ageing. Here we review experimental and theoretical work
exploring these non-equilibrium effects, with emphasis on recent developments.
The discussion addresses the structure and dynamics in non-equilibrium polymer
layers adsorbed from dilute polymer solutions and from polymer melts and more
concentrated solutions. Two distinct classes of behaviour arise, depending on
whether physisorption or chemisorption is involved. A given adsorbed chain
belonging to the layer has a certain fraction of its monomers bound to the
surface, f, and the remainder belonging to loops making bulk excursions. A
natural classification scheme for layers adsorbed from solution is the
distribution of single chain f values, P(f), which may hold the key to
quantifying the degree of irreversibility in adsorbed polymer layers. Here we
calculate P(f) for equilibrium layers; we find its form is very different to
the theoretical P(f) for non-equilibrium layers which are predicted to have
infinitely many statistical classes of chain. Experimental measurements of P(f)
are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte
Phase Behavior of Polyelectrolyte Block Copolymers in Mixed Solvents
We have studied the phase behavior of the poly(n-butyl
acrylate)-b-poly(acrylic acid) block copolymer in a mixture of two miscible
solvents, water and tetrahydrofuran (THF). The techniques used to examine the
different polymers, structures and phases formed in mixed solvents were static
and dynamic light scattering, small-angle neutron scattering, nuclear magnetic
resonance and fluorescence microscopy. By lowering the water/THF mixing ratio
X, the sequence unimers, micron-sized droplets, polymeric micelles was
observed. The transition between unimers and the micron-sized droplets occurred
at X = 0.75, whereas the microstructuration into core-shell polymeric micelles
was effective below X = 0.4. At intermediate mixing ratios, a coexistence
between the micron-sized droplets and the polymeric micelles was observed.
Combining the different aforementioned techniques, it was concluded that the
droplet dispersion resulted from a solvent partitioning that was induced by the
hydrophobic blocks. Comparison of poly(n-butyl acrylate) homopolymers and
poly(n-butyl acrylate)-b-poly(acrylic acid) block copolymers suggested that the
droplets were rich in THF and concentrated in copolymers and that they were
stabilized by the hydrophilic poly(acrylic acid) moieties.Comment: 11 pages, 12 figures, to appear in Macromolecule
Thermoelastic Sound Source: Waveforms in a Sensing Application
Photoacoustically generated sound pulses are widely used in various NDT, NDE and sensing applications when a non-touching method is preferred. The generation mechanisms are relatively well known, including types of waves generated, directional patterns, sound pressures and damage thresholds for the laser intensity [1]. The so-called thermoelastic regime is attractive to many applications despite of its low efficiency (usually about sub 0.1%). It is because that the process is nondestructive to samples and the theory is well established [2,3,4]. The current study addresses the prediction of the temporal ultrasound pulse shape of an optimum sound generation scheme using a low power diode pumped high repetition rate Nd:YAG pulse laser [5]. A model is proposed in which the radiation from the thermoelastic sound source is treated as an instantaneous piston source at the solid-fluid interface
- …