27 research outputs found

    Presence and Persistence of Putative Lytic and Temperate Bacteriophages in Vaginal Metagenomes from South African Adolescents

    Get PDF
    The interaction between gut bacterial and viral microbiota is thought to be important in human health. While fluctuations in female genital tract (FGT) bacterial microbiota similarly determine sexual health, little is known about the presence, persistence, and function of vaginal bacteriophages. We conducted shotgun metagenome sequencing of cervicovaginal samples from South African adolescents collected longitudinally, who received no antibiotics. We annotated viral reads and circular bacteriophages, identified CRISPR loci and putative prophages, and assessed their diversity, persistence, and associations with bacterial microbiota composition. Siphoviridae was the most prevalent bacteriophage family, followed by Myoviridae, Podoviridae, Herelleviridae, and Inoviridae. Full-length siphoviruses targeting bacterial vaginosis (BV)-associated bacteria were identified, suggesting their presence in vivo. CRISPR loci and prophage-like elements were common, and genomic analysis suggested higher diversity among Gardnerella than Lactobacillus prophages. We found that some prophages were highly persistent within participants, and identical prophages were present in cervicovaginal secretions of multiple participants, suggesting that prophages, and thus bacterial strains, are shared between adolescents. The number of CRISPR loci and prophages were associated with vaginal microbiota stability and absence of BV. Our analysis suggests that (pro)phages are common in the FGT and vaginal bacteria and (pro)phages may interact

    Improved Detection of Rare HIV-1 Variants using 454 Pyrosequencing

    Get PDF
    <div><p>454 pyrosequencing, a massively parallel sequencing (MPS) technology, is often used to study HIV genetic variation. However, the substantial mismatch error rate of the PCR required to prepare HIV-containing samples for pyrosequencing has limited the detection of rare variants within viral populations to those present above ~1%. To improve detection of rare variants, we varied PCR enzymes and conditions to identify those that combined high sensitivity with a low error rate. Substitution errors were found to vary up to 3-fold between the different enzymes tested. The sensitivity of each enzyme, which impacts the number of templates amplified for pyrosequencing, was shown to vary, although not consistently across genes and different samples. We also describe an amplicon-based method to improve the consistency of read coverage over stretches of the HIV-1 genome. Twenty-two primers were designed to amplify 11 overlapping amplicons in the HIV-1 clade B <i>gag-pol</i> and <i>env</i> gp120 coding regions to encompass 4.7 kb of the viral genome per sample at sensitivities as low as 0.01-0.2%. </p> </div

    Frequency of substitution errors for DNA polymerase combinations.

    No full text
    <p>Raw data from a (A) 597bp amplicon from env and a (B) 505bp amplicon from gag. Reads were aligned to pNL4-3 and the frequency of all errors for each site are shown. The error frequency for each site was taken as the number of incorrect bases divided by the total number of reads. Each dot represents a substitution relative to the pNL4-3 consensus. Error corrected data from (C) env and (D) gag. Carry-forward errors were corrected using an in-house perl script as described in the Methods. Bars above each panel indicate which pairwise comparisons are significant at p<0.05. Pairwise comparisons were done by a Kruskal-Wallis test, with a Dunns test correction for multiple comparisons.</p

    Read coverage following sequencing of amplicons derived from three regions of the viral genome from six HIV-1 infected subjects.

    No full text
    <p>Eleven amplicons, representing ~4.7kb of of the viral genome were aligned to a patient specific consensus. The position of each amplicons is shown relative to the HXB2 reference genome. The “spikes” in read coverage correspond to regions in which adjacent amplicons overlap. We did not have an amplicon that spanned the region around position 2000.</p

    Multistage Genomewide Association Study Identifies a Locus at 1q41 Associated with Rate of HIV-1 Disease Progression to Clinical AIDS

    No full text
    Background. A mean of 9–10 years of human immunodeficiency virus type 1 (HIV-1) infection elapse before clinical AIDS develops in untreated persons, but this rate of disease progression varies substantially among individuals. To investigate host genetic determinants of the rate of progression to clinical AIDS, we performed a multistage genomewide association study. Methods. The discovery stage comprised 156 individuals from the Multicenter AIDS Cohort Study, enriched with rapid and long-term nonprogressors to increase statistical power. This was followed by replication tests of putatively associated genotypes in an independent population of 590 HIV-1–infected seroconverters. Results. Significant associations with delayed AIDS progression were observed in a haplotype located at 1q41, 36 kb upstream of PROX1 on chromosome 1 (relative hazard ratio, 0.69; Fisher’s combined P = 6.23 x 10-7). This association was replicated further in an analysis stratified by transmission mode, with the effect consistent in sexual or mucosal and parenteral transmission (relative hazard ratios, 0.72 and 0.63, respectively; combined P = 1.63 x 10-6). Conclusions. This study identified and replicated a locus upstream of PROX1 that is associated with delayed progression to clinical AIDS. PROX1 is a negative regulator of interferon-γ expression in T cells and also mitigates the advancement of vascular neoplasms, such as Kaposi sarcoma, a common AIDS-defining malignancy. This study adds to the cumulative polygenic host component that effectively regulates the progression to clinical AIDS among HIV-1–infected individuals, raising prospects for potential new avenues for therapy and improvements in AIDS prognosis

    CD8 and CD4 epitope predictions in RV144: no strong evidence of a T-cell driven sieve effect in HIV-1 breakthrough sequences from trial participants.

    No full text
    The modest protection afforded by the RV144 vaccine offers an opportunity to evaluate its mechanisms of protection. Differences between HIV-1 breakthrough viruses from vaccine and placebo recipients can be attributed to the RV144 vaccine as this was a randomized and double-blinded trial. CD8 and CD4 T cell epitope repertoires were predicted in HIV-1 proteomes from 110 RV144 participants. Predicted Gag epitope repertoires were smaller in vaccine than in placebo recipients (p = 0.019). After comparing participant-derived epitopes to corresponding epitopes in the RV144 vaccine, the proportion of epitopes that could be matched differed depending on the protein conservation (only 36% of epitopes in Env vs 84-91% in Gag/Pol/Nef for CD8 predicted epitopes) or on vaccine insert subtype (55% against CRF01_AE vs 7% against subtype B). To compare predicted epitopes to the vaccine, we analyzed predicted binding affinity and evolutionary distance measurements. Comparisons between the vaccine and placebo arm did not reveal robust evidence for a T cell driven sieve effect, although some differences were noted in Env-V2 (0.022≤p-value≤0.231). The paucity of CD8 T cell responses identified following RV144 vaccination, with no evidence for V2 specificity, considered together both with the association of decreased infection risk in RV 144 participants with V-specific antibody responses and a V2 sieve effect, lead us to hypothesize that this sieve effect was not T cell specific. Overall, our results did not reveal a strong differential impact of vaccine-induced T cell responses among breakthrough infections in RV144 participants

    HLA Class I-Driven Evolution of Human Immunodeficiency Virus Type 1 Subtype C Proteome: Immune Escape and Viral Load ▿

    No full text
    Human immunodeficiency virus type 1 (HIV-1) mutations that confer escape from cytotoxic T-lymphocyte (CTL) recognition can sometimes result in lower viral fitness. These mutations can then revert upon transmission to a new host in the absence of CTL-mediated immune selection pressure restricted by the HLA alleles of the prior host. To identify these potentially critical recognition points on the virus, we assessed HLA-driven viral evolution using three phylogenetic correction methods across full HIV-1 subtype C proteomes from a cohort of 261 South Africans and identified amino acids conferring either susceptibility or resistance to CTLs. A total of 558 CTL-susceptible and -resistant HLA-amino acid associations were identified and organized into 310 immunological sets (groups of individual associations related to a single HLA/epitope combination). Mutations away from seven susceptible residues, including four in Gag, were associated with lower plasma viral-RNA loads (q < 0.2 [where q is the expected false-discovery rate]) in individuals with the corresponding HLA alleles. The ratio of susceptible to resistant residues among those without the corresponding HLA alleles varied in the order Vpr > Gag > Rev > Pol > Nef > Vif > Tat > Env > Vpu (Fisher's exact test; P ≤ 0.0009 for each comparison), suggesting the same ranking of fitness costs by genes associated with CTL escape. Significantly more HLA-B (χ2; P = 3.59 × 10−5) and HLA-C (χ2; P = 4.71 × 10−6) alleles were associated with amino acid changes than HLA-A, highlighting their importance in driving viral evolution. In conclusion, specific HIV-1 residues (enriched in Vpr, Gag, and Rev) and HLA alleles (particularly B and C) confer susceptibility to the CTL response and are likely to be important in the development of vaccines targeted to decrease the viral load
    corecore