374 research outputs found

    The Unstoppable Rise of AI: An Interview with Dr. John Sanford, Spencer Burrows, and Anna Birchler

    Get PDF
    AI can both help and hurt the education field (higher education and secondary education). Despite Hollywood’s depiction of artificial intelligence solely in the form of killer death robots decades into the future, AI is much more versatile - and far more dangerous - than any killer robot could be. As artificial intelligence develops at a breakneck pace, its effect on our society will increase exponentially

    Yamato: Bringing the Moon to the Earth ... Again

    Get PDF
    The Yamato mission to the lunar South Pole-Aitken Basin returns samples that enable dating of lunar formation and the lunar bombardment period. The design of the Yamato mission is based on a systems engineering process which takes an advanced consideration of cost and mission risk to give the mission a high probability of success

    Recruiting and Hiring Millennial Talent in Northeast Ohio

    Get PDF
    Since October 2015, the Honors Business From and Awesome Inc. has been working with The J. M. Smucker Company to investigate the employment preferences, motivations and geographic preferences of millennial talent in Northeast Ohio. Through extensive secondary and primary research, Awesome Inc has provided an in-depth review of millennials in Northeast Ohio, and has provided two significant and applicable recommendations as supported by the research findings to assist The J. M. Smucker Company in their recruiting efforts

    Senior Recital: Jared Hutson Leach, jazz guitar

    Get PDF
    This recital is presented in partial fulfillment of requirements for the degree Bachelor of Music in Performance. Mr. Leach studies jazz guitar with Trey Wright.https://digitalcommons.kennesaw.edu/musicprograms/1261/thumbnail.jp

    DO LATITUDE, ELEVATION, TEMPERATURE, AND PRECIPITATION INFLUENCE BODY AND CLUTCH SIZES OF FEMALE COMMON FIVE-LINED SKINKS, PLESTIODON FASCIATUS (LINNAEUS, 1758)?

    Get PDF
    Common Five-lined Skinks (Plestiodon fasciatus) have an extensive distribution that includes much of eastern North America. We examined 490 female specimens (274 with putative clutch sizes) from throughout the range to see if latitude, elevation, mean annual temperature, and/or mean annual precipitation affected body or clutch sizes. We predicted that larger females would produce larger clutches, latitude and elevation would negatively affect both body and clutch sizes, and that temperature and precipitation would exert a positive effect. Our results did not consistently support those predictions. Body size was positively associated with latitude, negatively associated with temperature, and not associated with elevation or precipitation. Clutch size was not related to female body size, but in most instances was positively associated with temperature and precipitation but negatively associated with elevation and latitude. Effectively K-selected in the North and r-selected in the South, body and clutch sizes in this species appear to be responding to different select

    Assessment of intra- and inter-ventricular cardiac dyssynchrony in patients with repaired Tetralogy of Fallot: a cardiac magnetic resonance study

    Get PDF
    Using radiative magnetohydrodynamic simulations of the magnetized solar photosphere and detailed spectro-polarimetric diagnostics with the Fe I 6301.5 Å and 6302.5 Å photospheric lines in the local thermodynamic equilibrium approximation, we model active solar granulation as if it was observed at the solar limb. We analyze general properties of the radiation across the solar limb, such as the continuum and the line core limb darkening and the granulation contrast. We demonstrate the presence of profiles with both emission and absorption features at the simulated solar limb, and pure emission profiles above the limb. These profiles are associated with the regions of strong linear polarization of the emergent radiation, indicating the influence of the intergranular magnetic fields on the line formation. We analyze physical origins of the emission wings in the Stokes profiles at the limb, and demonstrate that these features are produced by localized heating and torsional motions in the intergranular magnetic flux concentrations

    High Resolution Cine Displacement Encoding with Stimulated Echoes (DENSE) at 3T with Navigator Feedback for Quantification of Cardiac Mechanics

    Get PDF
    Background: Measures of cardiac mechanics such as myocardial wall strain are better predictors of outcomes in patients with heart disease compared to traditional clinical measures and ejection fraction. Cine displacement encoding with stimulated echoes (DENSE) is an ideal method for quantifying cardiac motion which encodes tissue displacement in the phase of the MR signal and provides pixel-level resolution for quantifying cardiac mechanics. To date, DENSE has been implemented with resolution limited to 2-3 pixels across the myocardium. While this resolution is higher than most other techniques for quantifying cardiac mechanics, it may limit the ability of DENSE to quantify finer details such as transmural strains (subendocardial, midmyocardial and subepicardial) and right ventricular mechanics. We hypothesized that it is possible to efficiently increase the resolution of DENSE by a factor of 4 utilizing a navigator feedback system. Methods: 10 subjects (age 27 ± 3) with normal ECG and no history of cardiovascular disease were consented. A 3.0T Siemens Tim Trio with a 6-element chest and 24-element spine coil was configured with a navigator feedback system. The feedback system projected the navigator image of the diaphragm to the subject in real time to optimize breathold position. Standard resolution 2D cine DENSE was acquired with: 6 spiral interleaves, FOV = 340 mm, matrix = 96 × 96, thickness = 8 mm, TE/TR = 1.08/17, flip angle = 20, averages = 1, navigator acceptance window = ± 3 mm. High resolution 2D cine DENSE images were acquired by quadrupling the number of spirals to 24, increasing the matrix to 256 × 256, and increasing the averages to 3. Three short- and two long-axis images were acquired with each technique. Left ventricular strains and torsion were compared between the techniques using Bland-Altman. Results: The high resolution images took 11 times longer to acquire but the navigator feedback system provided good efficiency (69 ± 9%) for a total acquisition time of roughly 5 minutes per slice. The high resolution images had excellent quality with a noticeable improvement over standard resolution. There was a systematic but negligible difference between standard and high resolution data for circumferential and longitudinal strains. Radial strains showed the largest differences consistent with a systematic under-estimation of radial strain from standard resolution DENSE. Torsion was not significantly different between the two methods. Conclusions: High resolution cine DENSE MRI with navigator feedback is feasible at 3T and produces high quality images with 4 times the resolution of standard DENSE. Left ventricular circumferential strains, longitudinal strains, and torsion showed negligible differences between high and low resolution DENSE. Radial strains were significantly different, potentially due to better accuracy with high resolution DENSE due to the increased number of pixels within the thickness of the myocardial wall

    Characterizing the Temporal Evolution of Altered Cardiac Mechanics in Diet-Induced Obese Mice Using Cine DENSE CMR

    Get PDF
    Background Obesity and metabolic syndrome are associated with increased risk of cardiovascular disease. Research suggests that altered cardiac mechanics (i.e., reduced strains, torsion, and synchrony of contraction) are present in obesity; yet, the causes of this mechanical dysfunction and its relationship to other sequelae of obesity (e.g., hypertension and elevated blood glucose) are not well understood. We hypothesize that diet-induced obesity in mice leads to reductions in measures of left ventricular (LV) mechanics, which develop in acute response to the onset of hyperglycemia, hypertension, and ventricular remodeling. Methods Twenty 4-week-old C57BL/6J mice were randomized (n = 10 per group) to either a high-fat (60% kcal from fat) or sucrose-matched low-fat (10% kcal from fat) diet for 28 weeks. After 4 weeks and every 6 weeks thereafter, LV mechanics were quantified using cine displacement encoding with stimulated echoes (DENSE) on a 7T ClinScan MRI (Bruker, Ettlingen, Germany) with a 4-element phased array cardiac coil. Three short-axis and two long-axis slices were acquired with 13-20 frames per cardiac cycle. Semi-automated post-processing was performed using custom software in MATLAB (Mathworks, Natick, MA). Additionally, systolic blood pressure (via tail cuff measurement) and fasting blood glucose were assessed every 4 weeks on staggered schedules. Results Mice on the high-fat diet became obese relative to the low-fat controls (49.9 vs. 29.2 g, respectively, by week 28;). Fasting blood glucose was elevated in the high-fat group (202 vs. 112 mg/dL; p \u3c 0.05) starting from the earliest measurement (week 7 on diet), whereas significant differences in LV mass (88 vs. 79 mg) and systolic blood pressure (172 vs. 162 mmHg) developed much later (weeks 22 and 25 on diet, respectively). Significant reductions in peak LV radial (15%) and circumferential (8%) strains and reduced contractile synchrony were detected in the high-fat group for the first time in week 28. A 10% reduction in peak torsion was also observed at that time, but did not reach statistical significance (p = 0.075). There were no differences in LV cavity volumes or ejection fraction. Conclusions Diet-induced obesity in mice is associated with reduced left ventricular mechanics. This dysfunction develops long after the manifestation of hyperglycemia in this model, which suggests that chronic alterations in glucose/insulin levels and/or signaling may contribute more to cardiac contractile dysfunction than acute elevations. Late development of concentric ventricular hypertrophy and hypertension prior to suppressed cardiac mechanics also suggests an important role of these processes in the reduced ventricular function

    Two-Dimensional Estimates of Left Ventricular Strains are Significantly Affected by Through-Plane Motion

    Get PDF
    Background Advanced measures of cardiac mechanics such as left ventricular (LV) strains can be used in conjunction with classical biomarkers to gauge cardiovascular health and improve prediction of patient outcomes. Several imaging techniques, including displacement-encoded magnetic resonance imaging (DENSE), are used to non-invasively assess cardiac mechanics. These data are predominantly acquired in two dimensions (2D) due to simplified post-processing and shorter acquisition times; however, this type of acquisition and subsequent analysis cannot account for through-plane motion caused by longitudinal contraction of the left ventricle. We hypothesized that through-plane motion has a significant effect on 2D strain estimates. Methods Cine DENSE data were acquired in eight healthy volunteers (Age: 27 ± 3 years) with a 3T Siemens Tim Trio scanner. Short-axis slices with 2.8 mm in-plane resolution and an 8 mm slice thickness were acquired to span the entire LV. Displacements were encoded in both through-plane and in-plane directions with an effective temporal resolution of 34 ms. Endocardial and epicardial boundaries were delineated on the magnitude image of all short axis DENSE images. Radial and circumferential strains were computed based upon the deformation of the myocardium relative to the end-diastolic frame. Through-plane displacements were ignored for 2D analysis. For three-dimensional (3D) analysis, a 3D representation of the myocardium derived from the same endocardial and epicardial boundaries was deformed using the measured displacement field. The resulting radial and circumferential strain values were compared directly between the 2D and 3D analyses using a two-tailed paired t-test. Results Two dimensional processing consistently overestimated radial strain and underestimated circumferential strain. Peak circumferential strain was significantly different at the basal and mid-ventricular segments (p = 0.001 and 0.009, respectively). Peak radial strain decreased from the base to the apex in both 2D and 3D analyses; however, 2D significantly overestimated radial strain at the mid-ventricular and apical slices compared to 3D (p = 0.002). Global peak radial and circumferential strains from 3D were 30 ± 5% and -20 ± 2%, respectively, compared to 36 ± 5% and -18 ± 2% for 2D (both p \u3c 0.001). Conclusions Two-dimensional imaging methods for assessing left ventricular mechanics consistently overestimate radial strain and underestimate circumferential strain when compared to three-dimensional imaging. This limitation of two-dimensional imaging is likely due to the through-plane motion of the heart, which is ignored in two-dimensional techniques but easily accounted for when using three-dimensional techniques. Future research needs to determine the clinical and prognostic significance of this difference. Funding This research was funded in part by an NIH Early Independence Award to BKF (DP5 OD012132); contributions made by local businesses and individuals through a partnership between Kentucky Children\u27s Hospital and Children\u27s Miracle network; and the University of Kentucky Cardiovascular Research Center, grant UL1RR033173 from the National Center for Research Resources (NCRR), funded by the Office of the Director, National Institutes of Health (NIH) and supported by the NIH Roadmap for Medical Research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding sources

    Assessment of intra- and inter-ventricular cardiac dyssynchrony in patients with repaired Tetralogy of Fallot: a cardiac magnetic resonance study

    Get PDF
    Background Patients with repaired tetralogy of Fallot (TOF) frequently have right bundle branch block. However, the contribution of cardiac dyssynchrony to dysfunction remains controversial. To better understand this phenomenon and ultimately study therapies, we developed a method to quantify left (LV), right (RV) and inter-ventricular cardiac dyssynchrony using standard cine CMR. Methods 30 patients with repaired TOF (age 28 ± 16, 46% female) and 17 healthy controls (age 29 ± 7, 12% female) underwent cine CMR. Patients were imaged twice to assess inter-test reproducibility. Circumferential strain vs time curves were generated with a custom feature tracking algorithm for 12 LV and 12 RV segments in 4-7 slices encompassing the ventricles. For each segment, the temporal offset (TO) of the strain curve relative to a global reference curve derived from the controls was calculated and expressed as a percent of the cardiac cycle. The intra-ventricular dyssynchrony index (DI) for each ventricle was computed as the standard deviation (SD) of the TOs (more dyssynchrony increases the SD). The inter-ventricular DI was calculated as the difference in median RV and median LV TOs. Regional dyssynchrony was quantified in 3 LV (septum, infero-lateral and antero-lateral wall) and 3 RV (septum, sinus, outflow tract) regions using median TOs. Results Compared to controls, patients with repaired TOF had a greater LV, RV and inter-ventricular DI. The greater inter-ventricular delay in the patients was primarily due to a global delay in RV contraction with the RV contracting 4.9 ± 3.5% later than the LV in patients vs 1.4 ± 3.2% earlier in controls. Median TOs were similar in the three LV regions between patients and controls, but all three RV regions were significantly delayed in patients compared to the controls. Contraction patterns in the RV were also distinct: in controls, the earliest contraction was seen in the outflow tract; in patients, contraction occurred first in the septum and last in the outflow tract. Inter-test reproducibility for the three DIs was good with all coefficients of variation Conclusions Patients with repaired TOF suffer from left, right and inter-ventricular cardiac dyssynchrony which can all be quantified from standard cine CMR with good inter-test reproducibility. Future studies need to determine whether these patients may benefit from resynchronization therapy
    corecore