202 research outputs found
Time and position sensitive single photon detector for scintillator read-out
We have developed a photon counting detector system for combined neutron and
gamma radiography which can determine position, time and intensity of a
secondary photon flash created by a high-energy particle or photon within a
scintillator screen. The system is based on a micro-channel plate
photomultiplier concept utilizing image charge coupling to a position- and
time-sensitive read-out anode placed outside the vacuum tube in air, aided by a
standard photomultiplier and very fast pulse-height analyzing electronics. Due
to the low dead time of all system components it can cope with the high
throughput demands of a proposed combined fast neutron and dual discrete energy
gamma radiography method (FNDDER). We show tests with different types of
delay-line read-out anodes and present a novel pulse-height-to-time converter
circuit with its potential to discriminate gamma energies for the projected
FNDDER devices for an automated cargo container inspection system (ACCIS).Comment: Proceedings of FNDA 201
Systematic Risk and Information Technology
We find evidence that the conventional wisdom, among both managers and researchers, that information technology (IT) investments are risky is incorrect. IT managers are increasingly asked to justify IT investments in financial terms in order to gain project approval. Researchers have moved beyond productivity in an attempt to “open up the black box” of the returns to investment in IT. Using a sample of 653 firm-years for the years 1991-1996, this study finds that IT reduces systematic risk in the five-year period after the IT investment. The implication for managers is that, while implementation of IT projects is risky in the near term, managers should use lower return requirements for IT investments due to the longer-term impact of IT upon firm-level systematic risk. For researchers, the implication is that part of the reason for excessively high estimates of returns attributed to levels of IT capital may be that prior investment in IT may have reduced systematic risk and borrowing cost to the firm
Full Facility Shock Frame Simulations of the Electric Arc Shock Tube
Radiative heating computations are performed for high speed lunar return experiments conducted in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The nonequilibrium radiative transport equations are solved via NASA's in-house radiation code NEQAIR using flow field input from US3D flow solver. The post-shock flow properties for the 10 km/s Earth entry conditions are computed using the stagnation line of a blunt-body and a full facility CFD (Computational Fluid Dynamics) simulation of the EAST shock tube. The shocked gas in the blunt-body flow achieves a thermochemical equilibrium away from the shock front whereas EAST flow exhibits a nonequilibrium behavior due to strong viscous dissipation of the shock by boundary layer. The full-tube flow calculations capture the influence of the boundary layer on the shocked gas state and provide a realistic fluid dynamic input for the radiative predictions. The integrated radiance behind the shock is calculated in NEQAIR for wavelength regimes from Vacuum-UltraViolet (VUV) to InfraRed (IR), which are pertinent to the emission characteristics of high enthalpy shock waves in air. These radiance profiles are validated against corresponding EAST shots. The full-tube simulations successfully predict a sharp radiance peak at the shock front which gets smeared in the test data due to the spatial resolution in the measurements. The full facility based radiance behind the shock shows a slightly better match with the test data in the VUV and Red spectral regions, as compared to that from a blunt-body based predictions. The UV radiance is very similar for both geometries and under-predicts the test behavior. The IR test data matches better with the blunt-body based predictions where the full-tube simulations show a significant over-prediction
Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N
The development of a mm-spatial-resolution, resonant-response detector based
on a micrometric glass capillary array filled with liquid scintillator is
described. This detector was developed for Gamma Resonance Absorption (GRA) in
14N. GRA is an automatic-decision radiographic screening technique that
combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with
very good sensitivity and specificity to nitrogenous explosives. Detailed
simulation of the detector response to electrons and protons generated by the
9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a
mixed gamma-ray and neutron source. Towards this, a prototype capillary
detector was assembled, including the associated filling and readout systems.
Simulations and experimental results indeed show that proton tracks are
distinguishable from electron tracks at relevant energies, on the basis of a
criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure
Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System
An air cargo inspection system combining two nuclear reaction based
techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy
Gamma Radiography is currently being developed. This system is expected to
allow detection of standard and improvised explosives as well as special
nuclear materials. An important aspect for the applicability of nuclear
techniques in an airport inspection facility is the inventory and lifetimes of
radioactive isotopes produced by the neutron and gamma radiation inside the
cargo, as well as the dose delivered by these isotopes to people in contact
with the cargo during and following the interrogation procedure. Using MCNPX
and CINDER90 we have calculated the activation levels for several typical
inspection scenarios. One example is the activation of various metal samples
embedded in a cotton-filled container. To validate the simulation results, a
benchmark experiment was performed, in which metal samples were activated by
fast-neutrons in a water-filled glass jar. The induced activity was determined
by analyzing the gamma spectra. Based on the calculated radioactive inventory
in the container, the dose levels due to the induced gamma radiation were
calculated at several distances from the container and in relevant time windows
after the irradiation, in order to evaluate the radiation exposure of the cargo
handling staff, air crew and passengers during flight. The possibility of
remanent long-lived radioactive inventory after cargo is delivered to the
client is also of concern and was evaluated.Comment: Proceedings of FNDA 201
Engineering of Pyroelectric Crystals Decoupled from Piezoelectricity as Illustrated by Doped α-Glycine
Design of pyroelectric crystals decoupled from piezoelectricity is not only a topic of scientific curiosity but also demonstrates effects in principle that have the potential to be technologically advantageous. Here we report a new method for the design of such materials. Thus, the co-doping of centrosymmetric crystals with tailor-made guest molecules, as illustrated by the doping of α-glycine with different amino acids (Threonine, Alanine and Serine). The polarization of those crystals displays two distinct contributions, one arising from the difference in dipole moments between guest and host and the other from the displacement of host molecules from their symmetry-related positions. These contributions exhibit different temperature dependences and response to mechanical deformation. Thus, providing a proof of concept for the ability to design pyroelectric materials with reduced piezoelectric coefficient (d22) to a minimal value, below the resolution limit of the method (<0.005 pm/V). © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.CICECO-Aveiro Institute of MaterialsIsraeli Ministry of Science with the Russian Foundation for Basic ResearchFundação para a Ciência e a Tecnologia, FCTRussian Foundation for Basic Research, РФФИ, (19‐52‐06004 MHTИ_a, 3‐16492)Israel Science Foundation, ISF, (1898/22)Ministerstwo Edukacji i Nauki, MNiSW, (N 075‐15‐2021‐677, UIDB/50011/2020, UIDP/50011/2020)Ural Federal University, UrFUMinistry of Science and Higher Education of the Russian Federation, (FEUZ-2020-0054)Funding text 1: This work was supported by the collaborative program of the Israeli Ministry of Science with the Russian Foundation for Basic Research (RFBR), grant #3‐16492. Russian partners thank RFBR for the financial support within the project #19‐52‐06004 MHTИ_a. The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University (Reg. N 2968) was used with the financial support of the Ministry of Science and Higher Education of the RF (Project N 075‐15‐2021‐677). This work was developed within the scope of project CICECO‐Aveiro Institute of Materials (UIDB/50011/2020 & UIDP/50011/2020) financed by national funds through the FCT—Foundation for Science and Technology (Portugal). IL thank the Israel Science Foundation for the financial support (#1898/22). The research made possible due to historic generosity of the Harold Perlman Family. VS is grateful for financial support of the Ministry of Science Higher Education of the Russian Federation (state task FEUZ‐2020‐0054). o oFunding text 2: This work was supported by the collaborative program of the Israeli Ministry of Science with the Russian Foundation for Basic Research (RFBR), grant #3-16492. Russian partners thank RFBR for the financial support within the project #19-52-06004 MHTИ_a. The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University (Reg. No 2968) was used with the financial support of the Ministry of Science and Higher Education of the RF (Project No 075-15-2021-677). This work was developed within the scope of project CICECO-Aveiro Institute of Materials (UIDB/50011/2020 & UIDP/50011/2020) financed by national funds through the FCT—Foundation for Science and Technology (Portugal). IL thank the Israel Science Foundation for the financial support (#1898/22). The research made possible due to historic generosity of the Harold Perlman Family. VS is grateful for financial support of the Ministry of Science Higher Education of the Russian Federation (state task FEUZ-2020-0054)
Novel Photosensitizers Trigger Rapid Death of Malignant Human Cells and Rodent Tumor Transplants via Lipid Photodamage and Membrane Permeabilization
BACKGROUND: Apoptotic cascades may frequently be impaired in tumor cells; therefore, the approaches to circumvent these obstacles emerge as important therapeutic modalities. METHODOLOGY/PRINCIPAL FINDINGS: Our novel derivatives of chlorin e(6), that is, its amide (compound 2) and boronated amide (compound 5) evoked no dark toxicity and demonstrated a significantly higher photosensitizing efficacy than chlorin e(6) against transplanted aggressive tumors such as B16 melanoma and M-1 sarcoma. Compound 5 showed superior therapeutic potency. Illumination with red light of mammalian tumor cells loaded with 0.1 µM of 5 caused rapid (within the initial minutes) necrosis as determined by propidium iodide staining. The laser confocal microscopy-assisted analysis of cell death revealed the following order of events: prior to illumination, 5 accumulated in Golgi cysternae, endoplasmic reticulum and in some (but not all) lysosomes. In response to light, the reactive oxygen species burst was concomitant with the drop of mitochondrial transmembrane electric potential, the dramatic changes of mitochondrial shape and the loss of integrity of mitochondria and lysosomes. Within 3-4 min post illumination, the plasma membrane became permeable for propidium iodide. Compounds 2 and 5 were one order of magnitude more potent than chlorin e(6) in photodamage of artificial liposomes monitored in a dye release assay. The latter effect depended on the content of non-saturated lipids; in liposomes consisting of saturated lipids no photodamage was detectable. The increased therapeutic efficacy of 5 compared with 2 was attributed to a striking difference in the ability of these photosensitizers to permeate through hydrophobic membrane interior as evidenced by measurements of voltage jump-induced relaxation of transmembrane current on planar lipid bilayers. CONCLUSIONS/SIGNIFICANCE: The multimembrane photodestruction and cell necrosis induced by photoactivation of 2 and 5 are directly associated with membrane permeabilization caused by lipid photodamage
- …