520 research outputs found

    Time and position sensitive single photon detector for scintillator read-out

    Full text link
    We have developed a photon counting detector system for combined neutron and gamma radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy gamma radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate gamma energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).Comment: Proceedings of FNDA 201

    Numerical Prediction of Radiation Measurements Taken in the X2 Facility for Mars and Titan Gas Mixtures

    Get PDF
    Thermochemical relaxation behind a normal shock in Mars and Titan gas mixtures is simulated using a CFD solver, DPLR, for a hemisphere of 1 m radius; the thermochemical relaxation along the stagnation streamline is considered equivalent to the flow behind a normal shock. Flow simulations are performed for a Titan gas mixture (98% N2, 2% CH4 by volume) for shock speeds of 5.7 and 7.6 km/s and pressures ranging from 20 to 1000 Pa, and a Mars gas mixture (96% CO2, and 4% N2 by volume) for a shock speed of 8.6 km/s and freestream pressure of 13 Pa. For each case, the temperatures and number densities of chemical species obtained from the CFD flow predictions are used as an input to a line-by-line radiation code, NEQAIR. The NEQAIR code is then used to compute the spatial distribution of volumetric radiance starting from the shock front to the point where thermochemical equilibrium is nominally established. Computations of volumetric spectral radiance assume Boltzmann distributions over radiatively linked electronic states of atoms and molecules. The results of these simulations are compared against experimental data acquired in the X2 facility at the University of Queensland, Australia. The experimental measurements were taken over a spectral range of 310-450 nm where the dominant contributor to radiation is the CN violet band system. In almost all cases, the present approach of computing the spatial variation of post-shock volumetric radiance by applying NEQAIR along a stagnation line computed using a high-fidelity flow solver with good spatial resolution of the relaxation zone is shown to replicate trends in measured relaxation of radiance for both Mars and Titan gas mixtures

    Reconstruction of Schiaparelli and Comars Flight Data

    Get PDF
    ESA recently flew an entry, descent, and landing demonstrator module called Schiaparelli that entered the atmosphere of Mars on the 19th of October, 2016. The instrumentation suite included heatshield and backshell pressure transducers and thermocouples (known as AMELIA) and backshell radiation and direct heatflux-sensing sensors (known as COMARS and ICOTOM). Due to the failed landing of Schiaparelli, only a subset of the flight data was transmitted before and after plasma black-out. The goal of this paper is to present comparisons of the flight data with calculations from NASA simulation tools, DPLR/NEQAIR and LAURA/HARA. DPLR and LAURA are used to calculate the flowfield around the vehicle and surface properties, such as pressure and convective heating. The flowfield data are passed to NEQAIR and HARA to calculate the radiative heat flux. Comparisons will be made to the COMARS total heat flux, radiative heat flux and pressure measurements. Results will also be shown against the reconstructed heat flux which was calculated from an inverse analysis of the AMELIA thermocouple data performed by Astrium. Preliminary calculations are presented in this abstract. The aerodynamics of the vehicle and certain as yet unexplained features of the inverse analysis and forebody data will be investigated

    Experiment Design and Characterization for the Study of Afterbody Radiation During Mars Entry

    Get PDF
    Recent work has shown that a significant contributor to the afterbody aeroheating during Mars entry is radiation. However, relevant ground test data is not available to help assess the uncertainty associated with prediction of the radiation when designing the thermal protection system for the aeroshell afterbody. The present work is aimed at designing an experiment which allows the study of the afterbody radiation experienced during Mars entry. The X2 expansion tube at the University of Queensland is used to generate the relevant experimental freestream flow conditions. Analysis is carried out to accurately characterize the generated experimental freestream conditions. A two dimensional wedge model is used to produce the expanding flow which simulates aspects of the afterbody flow around Mars entry vehicles. Preliminary analysis of the generated expanding flow shows that it produces significant radiation in the mid-infrared region and has a steady duration of about 50-110 s. This allows emission spectroscopy to be conducted in the future

    Recent Advancements in Modeling and Simulation of Entry Systems at NASA

    Get PDF
    This paper describes recent development of modeling and simulation technologies for entry systems in support of NASA's exploration missions. Mission-tailored research and development in modeling of entry systems occurs across the Agency (e.g., within the Orion and Mars 2020 Programs), however the aim of this paper is to discuss the broad, cross-mission research conducted by NASA's Entry Systems Modeling (ESM) Project, which serves as the Agency's only concerted effort toward advancing entry systems across a range of technical disciplines. Technology development in ESM is organized and prioritized from a system-level perspective, resulting in four broad technical areas of investment: (1) Predictive material modeling, (2) Shock layer kinetics and radiation, (3) Computational and experimental aerosciences, and (4) Guidance, navigation, and control. Investments in thermal protection material modeling are geared toward high-fidelity, predictive models capable of handling complex structures, with an eye toward optimizing design performance and quantifying thermal protection system reliability. New computational tools have been developed to characterize material properties and behavior at the microstructural level, and experimental techniques (molecular beam scattering, micro-computed tomography, among others) have been developed to measure material kinetics, morphology, and other parameters needed to inform and validate detailed simulations. Advancements have also been made in macrostructural simulation capability to enable 3-D system-scale calculations of material response with complex topological features, including differential recession of tile gaps. Research and development in the area of shock layer kinetics has focused on air and CO2-based atmospheres. Capacity and capability of the NASA Ames Electric Arc Shock Tube (EAST) have been expanded in recent years and analysis of resulting data has led to several improvements in kinetic models, while simultaneously reducing uncertainties associated with radiative heat transfer predictions. First-principles calculations of fundamental kinetic, thermodynamic, and transport data, along with state-specific models for non-equilibrium flow regimes, have also yielded new insights and have the potential to vastly improve model fidelity. Aerosciences is a very broad area of interest in entry systems, yet a number of important challenges are being addressed: Coupled fluid-structure simulations of parachute inflation and dynamics; Experimental and computational studies of vehicle dynamics; Multi-phase flow with dust particles to simulate entry environments at Mars during dust storms; Studies of roughness-induced heating augmentation relevant to tiled and woven thermal protection systems; and Advanced numerical methods to optimize computational analyses for desired accuracy versus cost. Guidance and control in the context of entry systems has focused on development of methods for multi-axis control (i.e. pitch and yaw, rather than bank angle alone) of spacecraft during entry and descent. With precision landing requirements driven by Mars human exploration goals, recent efforts have yielded 6-DOF models of multi-axis control with propulsive descent of both inflatable and rigid ellipsled-like architectures

    Radiation measurements in a simulated non-terrestrial atmosphere

    Get PDF
    A high-speed wind tunnel has been used to experimentally simulate the flow experienced by a capsule entering a planetary atmosphere. High speed photography showed that a steady test time of approximately 50 μs existed in the facility. Holographic interferometry has been performed to measure the twodimensional density distribution around a cylinder in the flow. A peak density ratio (density normalised by the free-stream density) of about 14 was observed. Emission spectroscopy allowed the characterisation of the conditions along the stagnation streamline in front of the capsule model. The results showed a temperature that varied between 8,500 K and 11,000 K in this region

    At the Turn of the Tide: Space Use and Habitat Partitioning in Two Sympatric Shark Species Is Driven by Tidal Phase

    Get PDF
    Coexistence of ecologically similar species occupying the same geographic location (sympatry) poses questions regarding how their populations persist without leading to competitive exclusion. There is increasing evidence to show that micro-variations in habitat use may promote coexistence through minimizing direct competition for space and resources. We used two sympatric marine predators that show high fidelity to a small, remote coral atoll as a model to investigate how temporally dynamic partitioning of space use may promote coexistence. Using novel methods (difference network analysis and dynamic space occupancy analysis), we revealed that even though blacktip reef sharks Carcharhinus melanopterus and sicklefin lemon sharks Negaprion acutidens both show focused use of the same atoll habitats, the spatio-temporal dynamics of their use was partitioned such that they only shared the same microhabitats 26% of the time. Moreover, the degree of overlap was strongly influenced by the tidal cycle, peaking at ∼35% at higher tides as both species appear to target similar intertidal micro-habitats despite the increase in available space. Our work provides a rare example of how two marine predators with similar ecological roles and habitat preferences may coexist in the same place through dynamic segregation of habitat use in space and time, potentially reflecting adaptive behavioral traits for minimizing interactions. The strong influence of small tidal variation on species habitat use and partitioning also raises concerns over how atoll ecosystem dynamics may be influenced by sea level rises that could alter tidal dynamics

    DSMC Shock Simulation of Saturn Entry Probe Conditions

    Get PDF
    This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at NASA Ames Research Center. To directly compare to the experimental results, the DSMC simulations are post-processed through the NEQAIR line-by-line radiation code. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 kms shock waves are obtained at 0.2 and 0.1 Torr respectively and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models

    When all life counts in conservation

    Full text link
    © 2019 Society for Conservation Biology Conservation science involves the collection and analysis of data. These scientific practices emerge from values that shape who and what is counted. Currently, conservation data are filtered through a value system that considers native life the only appropriate subject of conservation concern. We examined how trends in species richness, distribution, and threats change when all wildlife count by adding so-called non-native and feral populations to the International Union for Conservation of Nature Red List and local species richness assessments. We focused on vertebrate populations with founding members taken into and out of Australia by humans (i.e., migrants). We identified 87 immigrant and 47 emigrant vertebrate species. Formal conservation accounts underestimated global ranges by an average of 30% for immigrants and 7% for emigrants; immigrations surpassed extinctions in Australia by 52 species; migrants were disproportionately threatened (33% of immigrants and 29% of emigrants were threatened or decreasing in their native ranges); and incorporating migrant populations into risk assessments reduced global threat statuses for 15 of 18 species. Australian policies defined most immigrants as pests (76%), and conservation was the most commonly stated motivation for targeting these species in killing programs (37% of immigrants). Inclusive biodiversity data open space for dialogue on the ethical and empirical assumptions underlying conservation science

    Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    Full text link
    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.Comment: Proceedings of FNDA 201
    corecore